The standard paradigm in Neural Architecture Search (NAS) is to search for a fully deterministic architecture with specific operations and connections. In this work, we instead propose to search for the optimal operation distribution, thus providing a stochastic and approximate solution, which can be used to sample architectures of arbitrary length. We propose and show, that given an architectural cell, its performance largely depends on the ratio of used operations, rather than any specific connection pattern in typical search spaces; that is, small changes in the ordering of the operations are often irrelevant. This intuition is orthogonal to any specific search strategy and can be applied to a diverse set of NAS algorithms. Through extensive validation on 4 data-sets and 4 NAS techniques (Bayesian optimisation, differentiable search, local search and random search), we show that the operation distribution (1) holds enough discriminating power to reliably identify a solution and (2) is significantly easier to optimise than traditional encodings, leading to large speed-ups at little to no cost in performance. Indeed, this simple intuition significantly reduces the cost of current approaches and potentially enable NAS to be used in a broader range of applications.


翻译:神经结构搜索(NAS)的标准范式是寻找具有特定操作和连接的完全确定性架构。 在这项工作中,我们提议搜索最优化的操作分布,从而提供一个可用作任意长度结构样本的随机和近似的解决办法。我们提议并显示,鉴于一个建筑单元,其性能在很大程度上取决于使用过操作的比例,而不是典型搜索空间中的任何具体连接模式;也就是说,操作顺序的细小变化往往无关紧要。这种直觉对于任何具体的搜索战略都是随机的,可以应用于一套不同的NAS算法。通过对4个数据集和4个NAS技术(Bayesian优化、不同搜索、本地搜索和随机搜索)的广泛验证,我们表明,操作分布 (1) 具有足够的差别性力量,足以可靠地确定解决方案,(2) 比传统编码更容易优化,导致在性操作过程中的大规模超速。事实上,这种简单直觉大大降低了当前方法的成本,并有可能使NAS在更广泛的应用中使用。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
【如何做研究】How to research ,22页ppt
专知会员服务
108+阅读 · 2021年4月17日
深度学习搜索,Exploring Deep Learning for Search
专知会员服务
57+阅读 · 2020年5月9日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
论文浅尝 | Reinforcement Learning for Relation Classification
开放知识图谱
9+阅读 · 2017年12月10日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
6+阅读 · 2020年10月8日
Arxiv
8+阅读 · 2020年6月15日
Scale-Aware Trident Networks for Object Detection
Arxiv
4+阅读 · 2019年1月7日
Arxiv
12+阅读 · 2018年9月5日
Arxiv
3+阅读 · 2018年6月14日
VIP会员
相关资讯
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
论文浅尝 | Reinforcement Learning for Relation Classification
开放知识图谱
9+阅读 · 2017年12月10日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
6+阅读 · 2020年10月8日
Arxiv
8+阅读 · 2020年6月15日
Scale-Aware Trident Networks for Object Detection
Arxiv
4+阅读 · 2019年1月7日
Arxiv
12+阅读 · 2018年9月5日
Arxiv
3+阅读 · 2018年6月14日
Top
微信扫码咨询专知VIP会员