Matrix completion aims to recover an unknown low-rank matrix from a small subset of its entries. In many applications, the rank of the unknown target matrix is known in advance. In this paper, we propose a two-phase algorithm that leverages the rank information to compute both a suitable value for the regularization parameter and a warm-start for an accelerated Soft-Impute algorithm. Properties inherited from proximal gradient algorithms are exploited to propose a parameter tuning to accelerate the method and also to establish a convergence analysis. Numerical experiments with both synthetic and real data show that the proposed algorithm can recover low-rank matrices, with high precision, faster than other well-established matrix completion algorithms.
翻译:矩阵完成的目的是从一个小子集条目中回收一个未知的低级矩阵。 在许多应用中, 未知的目标矩阵的级别是事先已知的。 在本文中, 我们建议采用一个两阶段算法, 利用等级信息来计算正规化参数的适当值和加速软化- 影响算法的热启动值。 从准度梯度算法继承下来的属性被用来提出参数调整, 以加速方法, 并建立一个趋同分析。 合成和真实数据的数值实验表明, 拟议的算法可以比其他既定的矩阵完成算法更精确、 更快地恢复低级矩阵。