We study the problem of assortative and disassortative partitions on random $d$-regular graphs. Nodes in the graph are partitioned into two non-empty groups. In the assortative partition every node requires at least $H$ of their neighbors to be in their own group. In the disassortative partition they require less than $H$ neighbors to be in their own group. Using the cavity method based on analysis of the Belief Propagation algorithm we establish for which combinations of parameters $(d,H)$ these partitions exist with high probability and for which they do not. For $H>\lceil \frac{d}{2} \rceil $ we establish that the structure of solutions to the assortative partition problems corresponds to the so-called frozen-1RSB. This entails a conjecture of algorithmic hardness of finding these partitions efficiently. For $H \le \lceil \frac{d}{2} \rceil $ we argue that the assortative partition problem is algorithmically easy on average for all $d$. Further we provide arguments about asymptotic equivalence between the assortative partition problem and the disassortative one, going trough a close relation to the problem of single-spin-flip-stable states in spin glasses. In the context of spin glasses, our results on algorithmic hardness imply a conjecture that gapped single spin flip stable states are hard to find which may be a universal reason behind the observation that physical dynamics in glassy systems display convergence to marginal stability.
翻译:在随机的美元正值图形中,我们研究的是随机 $d- Perguage 的反光和反异性分区问题。 图表中的节点被分割成两个非空的组。 在反光分区中, 每个节点都需要至少$H美元, 邻居的邻居必须属于他们自己的组。 在反光分区中, 他们需要低于$H的邻居才能进入他们自己的组内。 使用基于对信仰促进算法的分析而建立的洞度方法, 参数组合为$( d, h) 的这些分区存在很高的概率, 而这些分区则没有。 对于 $Hlclcil\\ d, od- h) 的偏差被分割成两个非空的组合。 对于 $lclorcalalalal- 直观, 我们确定 orlivercalalalalalalalalalalal 的稳定性结构与所谓的冷冻- RRSB 相匹配。 这必然地是找到这些分区的算性硬性硬度 。, orfldal- rouplationalalalalalal 问题在美元正值中, Procialtial Procialal Procial 问题在美元正值中, Procial Produal Produ Produ Produal 问题是, 问题是, 问题在美元和 Producal Procialbalbal 问题在美元平 Produ Produ Produ Produ Produ Produ Produ Produ Produ Produ Produ 问题是, 。