We study the problem of assortative and disassortative partitions on random $d$-regular graphs. Nodes in the graph are partitioned into two non-empty groups. In the assortative partition every node requires at least $H$ of their neighbors to be in their own group. In the disassortative partition they require less than $H$ neighbors to be in their own group. Using the cavity method based on analysis of the Belief Propagation algorithm we establish for which combinations of parameters $(d,H)$ these partitions exist with high probability and for which they do not. For $H>\lceil \frac{d}{2} \rceil $ we establish that the structure of solutions to the assortative partition problems corresponds to the so-called frozen-1RSB. This entails a conjecture of algorithmic hardness of finding these partitions efficiently. For $H \le \lceil \frac{d}{2} \rceil $ we argue that the assortative partition problem is algorithmically easy on average for all $d$. Further we provide arguments about asymptotic equivalence between the assortative partition problem and the disassortative one, going trough a close relation to the problem of single-spin-flip-stable states in spin glasses. In the context of spin glasses, our results on algorithmic hardness imply a conjecture that gapped single spin flip stable states are hard to find which may be a universal reason behind the observation that physical dynamics in glassy systems display convergence to marginal stability.


翻译:在随机的美元正值图形中,我们研究的是随机 $d- Perguage 的反光和反异性分区问题。 图表中的节点被分割成两个非空的组。 在反光分区中, 每个节点都需要至少$H美元, 邻居的邻居必须属于他们自己的组。 在反光分区中, 他们需要低于$H的邻居才能进入他们自己的组内。 使用基于对信仰促进算法的分析而建立的洞度方法, 参数组合为$( d, h) 的这些分区存在很高的概率, 而这些分区则没有。 对于 $Hlclcil\\ d, od- h) 的偏差被分割成两个非空的组合。 对于 $lclorcalalalal- 直观, 我们确定 orlivercalalalalalalalalalalal 的稳定性结构与所谓的冷冻- RRSB 相匹配。 这必然地是找到这些分区的算性硬性硬度 。, orfldal- rouplationalalalalalal 问题在美元正值中, Procialtial Procialal Procial 问题在美元正值中, Procial Produal Produ Produ Produal 问题是, 问题是, 问题在美元和 Producal Procialbalbal 问题在美元平 Produ Produ Produ Produ Produ Produ Produ Produ Produ Produ Produ 问题是, 。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
150+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年6月13日
Arxiv
0+阅读 · 2022年6月11日
Arxiv
0+阅读 · 2022年6月10日
Arxiv
0+阅读 · 2022年6月10日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
26+阅读 · 2018年2月27日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员