The 21st Century Cures Act of 2016 includes a provision for the U.S. Food and Drug Administration (FDA) to evaluate the potential use of real-world evidence (RWE) to support new indications for use for previously approved drugs, and to satisfy post-approval study requirements. Extracting reliable evidence from real-world data (RWD) is often complicated by a lack of treatment randomization, potential intercurrent events, and informative loss to follow up. Targeted Learning (TL) is a sub-field of statistics that provides a rigorous framework to help address these challenges. The TL Roadmap offers a step-by-step guide to generating valid evidence and assessing its reliability. Following these steps produces an extensive amount of information for assessing whether the study provides reliable scientific evidence in support regulatory decision making. This paper presents two case studies that illustrate the utility of following the roadmap. We use targeted minimum loss-based estimation combined with super learning to estimate causal effects. We also compared these findings with those obtained from an unadjusted analysis, propensity score matching, and inverse probability weighting. Non-parametric sensitivity analyses illuminate how departures from (untestable) causal assumptions would affect point estimates and confidence interval bounds that would impact the substantive conclusion drawn from the study. TL's thorough approach to learning from data provides transparency, allowing trust in RWE to be earned whenever it is warranted.
翻译:2016年21世纪戒律法规定美国食品和药物管理局(FDA)评估实际世界证据(RWE)的潜在用途,以支持对以前批准的药物使用的新迹象,并满足批准后的研究要求。从现实世界数据(RWD)中提取可靠证据往往因缺乏治疗随机化、潜在的间流事件和信息损失而变得复杂。定向学习(TL)是一个统计的子领域,为应对这些挑战提供了严格的框架。TL路线图为产生有效证据和评估其可靠性提供了逐步指南。这些步骤之后,产生了大量信息,用于评估研究是否提供了可靠的科学证据以支持监管决策。本文介绍了两个案例研究,说明了遵循路线图的效用。我们使用有针对性的基于损失的最低限度估计,加上超级学习来估计因果关系。我们还将这些结论与从未经调整的分析、偏差分匹配和反误差加权中获得的数据进行比较。非定量的敏感性分析表明,每次偏离(无法核实的)研究是否提供了可靠的科学证据证据支持做出监管决策。本文件提出的两个案例研究将说明采用路线图的效用。我们使用基于最低损失的估算,并同时进行超前期的判断。