We propose a data-driven approach based on information about structural fluctuations of polymer chains, which clearly identifies the glass transition temperature $T_g$ of polymer melts of weakly semiflexible chains. We use principal component analysis (PCA) with clustering to distinguish between liquid and glassy states and predict $T_g$ in the asymptotic limit. Our method indicates that for temperatures approaching $T_g$ from above it is sufficient to consider short molecular dynamics simulation trajectories, which just reach into the Rouse-like monomer displacement regime. The first eigenvalue of PCA and participation ratio show sharp changes around $T_g$. Our approach requires minimum user inputs and is robust and transferable.
翻译:我们建议基于聚合物链结构波动信息的数据驱动方法,该方法明确了微弱的半灵活链的聚合物熔化的玻璃转换温度$T$g。我们使用主要成分分析(PCA)来区分液态和玻璃状态,并预测无温限度的$T$g美元。我们的方法表明,对于从上到下接近$T$g的温度,只要考虑短分子动态模拟轨迹就足够了,而短分子动态模拟轨迹只是深入到了类似鼠的单体排流制度。五氯苯甲醚的首个乙基值和参与率显示在$T$g$上发生了剧烈变化。我们的方法需要最低限度的用户投入,并且是稳健和可转让的。