Much hope for finding new physics phenomena at microscopic scale relies on the observations obtained from High Energy Physics experiments, like the ones performed at the Large Hadron Collider (LHC). However, current experiments do not indicate clear signs of new physics that could guide the development of additional Beyond Standard Model (BSM) theories. Identifying signatures of new physics out of the enormous amount of data produced at the LHC falls into the class of anomaly detection and constitutes one of the greatest computational challenges. In this article, we propose a novel strategy to perform anomaly detection in a supervised learning setting, based on the artificial creation of anomalies through a random process. For the resulting supervised learning problem, we successfully apply classical and quantum Support Vector Classifiers (CSVC and QSVC respectively) to identify the artificial anomalies among the SM events. Even more promising, we find that employing an SVC trained to identify the artificial anomalies, it is possible to identify realistic BSM events with high accuracy. In parallel, we also explore the potential of quantum algorithms for improving the classification accuracy and provide plausible conditions for the best exploitation of this novel computational paradigm.
翻译:在微粒规模上找到新物理现象的希望很大,这取决于高能物理实验的观测结果,如大型高原相撞机(LHC)的观测结果。然而,目前的实验并不表明能够指导制定超出标准模型(BSM)的更多理论的新物理学的明显迹象。从LHC产生的大量数据中确定新物理学的特征属于异常检测的类别,并构成最大的计算挑战之一。在本篇文章中,我们提出了一个新的战略,在通过随机过程人为创造异常现象的基础上,在有监督的学习环境中进行异常现象的检测。对于由此产生的受监督的学习问题,我们成功地应用了经典和量子支持矢量支持矢量器(CSVC和QSVC)来识别超标准模型事件中的人为异常现象。更有希望的是,我们发现使用受过训练的SVC来识别人为异常现象是有可能以高度准确的方式查明符合现实的BSM事件。同时,我们还探索量算法的潜力,以提高分类的准确性,并为最佳利用这一新型计算模型提供可信的条件。