This paper attempts to present the stochastic differential equations of diffusion models in a manner that is accessible to a broad audience. The diffusion process is defined over a population density in R^d. Of particular interest is a population of images. In a diffusion model one first defines a diffusion process that takes a sample from the population and gradually adds noise until only noise remains. The fundamental idea is to sample from the population by a reverse-diffusion process mapping pure noise to a population sample. The diffusion process is defined independent of any ``interpretation'' but can be analyzed using the mathematics of variational auto-encoders (the ``VAE interpretation'') or the Fokker-Planck equation (the ``score-matching intgerpretation''). Both analyses yield reverse-diffusion methods involving the score function. The Fokker-Planck analysis yields a family of reverse-diffusion SDEs parameterized by any desired level of reverse-diffusion noise including zero (deterministic reverse-diffusion). The VAE analysis yields the reverse-diffusion SDE at the same noise level as the diffusion SDE. The VAE analysis also yields a useful expression for computing the population probabilities of a given point (image). This formula for the probability of a given point does not seem to follow naturally from the Fokker-Planck analysis. Much, but apparently not all, of the mathematics presented here can be found in the literature. Attributions are given at the end of the paper.
翻译:本文试图以一个广大受众可以访问的方式展示扩散模型的随机差分方程。 扩散过程是用R ⁇ d中的人口密度来定义的。 特别感兴趣的是图像群。 在一个扩散模型中, 一个先定义一个从人群中取样的传播过程, 并逐渐增加噪音, 直到噪音留下。 基本的想法是通过反向扩散过程向人口样本进行取样, 将纯噪音映射成纯噪音。 扩散过程独立于任何“ 解释”, 也可以使用变式自动计算器( “ VAE 解释” ) 或 Fokker- Planck 等方程的数学数学数学来分析。 两种分析都产生包含得分函数的反向扩散方法。 Fokker- Planck 分析产生一个由任何理想的反向扩散噪音水平( 包括零) 所显示的反向扩散。 VAE 分析不会产生反向扩散 SDEK值, 而给定值的直径直径直径分析也显示为SDE值的数值。 。 给定的精确度是SDE 的数值, 的精确度, 的精确度分析也表现为SDE 。