Dynamic Time Warping (DTW) is a popular time series distance measure that aligns the points in two series with one another. These alignments support warping of the time dimension to allow for processes that unfold at differing rates. The distance is the minimum sum of costs of the resulting alignments over any allowable warping of the time dimension. The cost of an alignment of two points is a function of the difference in the values of those points. The original cost function was the absolute value of this difference. Other cost functions have been proposed. A popular alternative is the square of the difference. However, to our knowledge, this is the first investigation of both the relative impacts of using different cost functions and the potential to tune cost functions to different tasks. We do so in this paper by using a tunable cost function {\lambda}{\gamma} with parameter {\gamma}. We show that higher values of {\gamma} place greater weight on larger pairwise differences, while lower values place greater weight on smaller pairwise differences. We demonstrate that training {\gamma} significantly improves the accuracy of both the DTW nearest neighbor and Proximity Forest classifiers.
翻译:动态时间扭曲( DTW) 是一个流行的时间序列距离测量, 将两个序列中的点对齐。 这些对齐支持对时间维度进行时间维度的扭曲, 以便允许以不同速度展开进程。 距离是由此导致的时间维度对齐的最小成本总和。 两个点对齐的成本是这些点值差异的函数。 原始成本函数是这一差异的绝对值。 已经提出了其他成本函数 。 一个受欢迎的替代函数是差异的正方形 。 然而, 据我们所知, 这是第一次对使用不同成本函数的相对影响以及将成本函数调节到不同任务的可能性进行调查 。 我们在本文中这样做, 使用一个具有参数 ~ 伽玛的金枪鱼成本函数 ~ lambda/ gamma 。 我们显示, 更高值 $ 伽玛 将更大的重量放在更大的对称差异上, 而 更低值则将更大的重量放在更小的对称差异上。 我们证明, 培训 ~ 伽玛 将大大地提高 DTTW 的近处 和准森林 。