We present a protocol in the shuffle model of differential privacy (DP) for the \textit{frequency estimation} problem that achieves error $\omega(1)\cdot O(\log n)$, almost matching the central-DP accuracy, with $1+o(1)$ messages per user. This exhibits a sharp transition phenomenon, as there is a lower bound of $\Omega(n^{1/4})$ if each user is allowed to send only one message. Previously, such a result is only known when the domain size $B$ is $o(n)$. For a large domain, we also need an efficient method to identify the \textit{heavy hitters} (i.e., elements that are frequent enough). For this purpose, we design a shuffle-DP protocol that uses $o(1)$ messages per user and can identify all heavy hitters in time polylogarithmic in $B$. Finally, by combining our frequency estimation and the heavy hitter detection protocols, we show how to solve the $B$-dimensional \textit{1-sparse vector summation} problem in the high-dimensional setting $B=\Omega(n)$, achieving the optimal central-DP MSE $\tilde O(n)$ with $1+o(1)$ messages per user. In addition to error and message number, our protocols improve in terms of message size and running time as well. They are also very easy to implement. The experimental results demonstrate order-of-magnitude improvement over prior work.
翻译:在不同的隐私模式(DP) 中, 我们展示了一个协议, 用于 leftliite{ 频度估计 问题, 导致错误 $\ omega(1)\ cdot O( log n) $\ cdot O( log n), 几乎匹配中央- DP 准确性, 每用户1+o(1) 美元 信息。 这显示了一种尖锐的过渡现象, 因为如果每个用户只允许发送一个信息, 那么每个用户就只能发送一个信息。 之前, 只有当域大小 $B$ 是 $( n) 时才知道这样的结果。 对于大域, 我们还需要一个有效的方法来识别 $( textitle) { { cdotrgy hitters} (即元素足够频繁的元素) 。 为此, 我们设计了一个 shifle- DP 协议, 使用$( $( $) (n) (n {1- splain) comm), 可以识别所有高频估计和重的电量 协议 $( $( $) 美元) ASloomal- ormax) max) 问题, 。 最后在 O- sloade- sessal- sal- sal- romax maxxx max max max max max max max ma max max max max max max max max max max max max max max max max max max max max max