In this work we undertake a thorough study of the non-asymptotic properties of the vanilla generative adversarial networks (GANs). We prove a sharp oracle inequality for the Jensen-Shannon (JS) divergence between the underlying density $\mathsf{p}^*$ and the GAN estimate. We also study the rates of convergence in the context of nonparametric density estimation. In particular, we show that the JS-divergence between the GAN estimate and $\mathsf{p}^*$ decays as fast as $(\log{n}/n)^{2\beta/(2\beta+d)}$ where $n$ is the sample size and $\beta$ determines the smoothness of $\mathsf{p}^*$. To the best of our knowledge, this is the first result in the literature on density estimation using vanilla GANs with JS convergence rates faster than $n^{-1/2}$ in the regime $\beta > d/2$. Moreover, we show that the obtained rate is minimax optimal (up to logarithmic factors) for the considered class of densities.
翻译:在这项工作中,我们彻底研究了香草基因对抗网络(GANs)的非物质特性。我们证明Jensen-Shannon(JS)在基密度$\mathsf{p ⁇ }$和GAN估计值之间的差价之间存在着尖锐的不平等。我们还研究了非参数密度估计范围内的趋同率。特别是,我们表明,JS-Dirence在GAN估计值与美元(log{n}/n)%2\beta/(2\beta+d)}的衰减率之间,速度快于$(log{n}/n)%2\beta/(2\beta+d)},其中,美元是样本规模,美元决定了$\mathsf{p ⁇ $的平滑度。据我们所知,这是使用香草GANs和JSUNS的密度估计文献中的第一个结果。在制度下,美元/beta> d/2美元制度下, 美元=beta/d/2美元。此外,我们表明,获得的比率是所考虑的山顶级因素的最佳比率。