In this paper, we consider the service caching and the computing resource allocation in edge computing (EC) enabled networks. We introduce a random service caching design considering multiple types of latency sensitive services and the base stations (BSs)' service caching storage. We then derive a successful service probability (SSP). We also formulate a SSP maximization problem subject to the service caching distribution and the computing resource allocation. Then, we show that the optimization problem is nonconvex and develop a novel algorithm to obtain the stationary point of the SSP maximization problem by adopting the parallel successive convex approximation (SCA). Moreover, to further reduce the computational complexity, we also provide a low complex algorithm that can obtain the near-optimal solution of the SSP maximization problem in high computing capability region. Finally, from numerical simulations, we show that proposed solutions achieve higher SSP than baseline schemes. Moreover, we show that the near-optimal solution achieves reliable performance in the high computing capability region. We also explore the impacts of target delays, a BSs' service cache size, and an EC servers' computing capability on the SSP.


翻译:在本文中, 我们考虑边缘计算( EC) 启用的网络中的服务缓存和计算资源分配。 我们引入了随机服务缓存设计, 考虑多种类型的长期敏感服务和基站的服务缓存。 然后我们得出一个成功的服务概率( SSP )。 我们还在服务缓存分布和计算资源分配的前提下, 开发了 SSP 最大化问题。 然后, 我们展示了优化问题不是冷凝, 并开发了一种新的算法, 以便通过采用平行连续的 convex 近似( SAS) 来获得 SSP 最大化问题的固定点 。 此外, 为了进一步降低计算复杂性, 我们还提供了一种低复杂算法, 可以在高计算能力区域获得 SSP 最大化问题的近最佳解决方案 。 最后, 我们从数字模拟中显示, 拟议的解决方案比基线计划要高。 此外, 我们显示, 近最佳解决方案在高计算能力区域取得了可靠的性能。 我们还探讨了目标延迟、 BSSS 服务缓存大小以及EC 服务器对 SSP 计算能力的影响 。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月13日
Arxiv
0+阅读 · 2023年3月11日
Arxiv
35+阅读 · 2019年11月7日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员