We design short blocklength codes for the Gaussian wiretap channel under information-theoretic security guarantees. Our approach consists in decoupling the reliability and secrecy constraints in our code design. Specifically, we handle the reliability constraint via an autoencoder, and handle the secrecy constraint with hash functions. For blocklengths smaller than or equal to 128, we evaluate through simulations the probability of error at the legitimate receiver and the leakage at the eavesdropper for our code construction. This leakage is defined as the mutual information between the confidential message and the eavesdropper's channel observations, and is empirically measured via a neural network-based mutual information estimator. Our simulation results provide examples of codes with positive secrecy rates that outperform the best known achievable secrecy rates obtained non-constructively for the Gaussian wiretap channel. Additionally, we show that our code design is suitable for the compound and arbitrarily varying Gaussian wiretap channels, for which the channel statistics are not perfectly known but only known to belong to a pre-specified uncertainty set. These models not only capture uncertainty related to channel statistics estimation, but also scenarios where the eavesdropper jams the legitimate transmission or influences its own channel statistics by changing its location.
翻译:我们根据信息理论安全保障措施为高斯窃听频道设计短长的区块代码。 我们的方法是将代码设计中的可靠性和保密限制脱钩。 具体地说, 我们通过自动编码器处理可靠性限制, 并用散列功能处理保密限制。 对于小于或等于128的区块长度, 我们通过模拟合法接收器出错的概率和窃听器的泄漏来评估代码构建。 这种渗漏被定义为机密信息与窃听器频道观测之间的相互信息, 并且通过基于神经网络的共享信息估计器进行实验性测量。 我们的模拟结果提供了肯定保密率的代码实例, 超过了已知的最佳可实现的保密率。 对于高斯窃听器频道来说, 我们通过模拟来评估我们合法接收器的错误概率和窃听器的泄漏概率。 我们显示, 我们的代码设计适合化合物和任意不同的高斯窃听频道, 其中的频道统计数据并不完全为人所知,而只是已知的预定义的不确定性。 这些模型不仅包含基于电子网络的预设的不确定性。 这些模型不仅反映了其传输位置的不确定性, 也反映了频道的图像。