We consider leader election in clique networks, where $n$ nodes are connected by point-to-point communication links. For the synchronous clique under simultaneous wake-up, i.e., where all nodes start executing the algorithm in round $1$, we show a tradeoff between the number of messages and the amount of time. More specifically, we show that any deterministic algorithm with a message complexity of $n f(n)$ requires $\Omega\left(\frac{\log n}{\log f(n)+1}\right)$ rounds, for $f(n) = \Omega(\log n)$. Our result holds even if the node IDs are chosen from a relatively small set of size $\Theta(n\log n)$, as we are able to avoid using Ramsey's theorem. We also give an upper bound that improves over the previously-best tradeoff. Our second contribution for the synchronous clique under simultaneous wake-up is to show that $\Omega(n\log n)$ is in fact a lower bound on the message complexity that holds for any deterministic algorithm with a termination time $T(n)$. We complement this result by giving a simple deterministic algorithm that achieves leader election in sublinear time while sending only $o(n\log n)$ messages, if the ID space is of at most linear size. We also show that Las Vegas algorithms (that never fail) require $\Theta(n)$ messages. For the synchronous clique under adversarial wake-up, we show that $\Omega(n^{3/2})$ is a tight lower bound for randomized $2$-round algorithms. Finally, we turn our attention to the asynchronous clique: Assuming adversarial wake-up, we give a randomized algorithm that achieves a message complexity of $O(n^{1 + 1/k})$ and an asynchronous time complexity of $k+8$. For simultaneous wake-up, we translate the deterministic tradeoff algorithm of Afek and Gafni to the asynchronous model, thus partially answering an open problem they pose.


翻译:我们考虑在 cloique 网络中进行领导者选举, 在这种网络中, 美元将连接到 点对点通信连接。 对于在同时警醒下同步的cloique, 也就是说, 所有节ids 开始执行圆1美元的算法, 我们显示信息数量和时间数量之间的权衡。 更具体地说, 我们显示, 信息复杂度为 $ f( n) 的任何确定性算法都需要 美元( left)( left) (\ frac) n=log f( n)/2+1 ⁇ right) 回合。 对于 $( n) 美元对同时警醒中同步的美元交易的第二次贡献, 美元( n) = Omegaa (n) colicial (n) comlistal- dislational =national $( 美元) lax lax discials a lax lax lax lax more) a more lax lax. we a mistium lax a we a motient motiquest motical endal ( we) a motiquest mess)

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月13日
Arxiv
0+阅读 · 2023年3月13日
On the Fusion Strategies for Federated Decision Making
Arxiv
0+阅读 · 2023年3月10日
Arxiv
0+阅读 · 2023年3月10日
Arxiv
0+阅读 · 2023年3月9日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员