Object detection systems have traditionally relied on supervised learning with manually annotated bounding boxes, achieving high accuracy at the cost of substantial annotation investment. The emergence of Vision-Language Models (VLMs) offers an alternative paradigm enabling zero-shot detection through natural language queries, eliminating annotation requirements but operating with reduced accuracy. This paper presents the first comprehensive cost-effectiveness analysis comparing supervised detection (YOLO) with zero-shot VLM inference (Gemini Flash 2.5). Through systematic evaluation on 1,000 stratified COCO images and 200 diverse product images spanning consumer electronics and rare categories, combined with detailed Total Cost of Ownership modeling, we establish quantitative break-even thresholds governing architecture selection. Our findings reveal that supervised YOLO achieves 91.2% accuracy versus 68.5% for zero-shot Gemini on standard categories, representing a 22.7 percentage point advantage that costs $10,800 in annotation for 100-category systems. However, this advantage justifies investment only beyond 55 million inferences, equivalent to 151,000 images daily for one year. Zero-shot Gemini demonstrates 52.3% accuracy on diverse product categories (ranging from highly web-prevalent consumer electronics at 75-85% to rare specialized equipment at 25-40%) where supervised YOLO achieves 0% due to architectural constraints preventing detection of untrained classes. Cost per Correct Detection analysis reveals substantially lower per-detection costs for Gemini ($0.00050 vs $0.143) at 100,000 inferences despite accuracy deficits. We develop decision frameworks demonstrating that optimal architecture selection depends critically on deployment volume, category stability, budget constraints, and accuracy requirements rather than purely technical performance metrics.
翻译:暂无翻译