Multi-access edge computing (MEC) and network function virtualization (NFV) are promising technologies to support emerging IoT applications, especially those computation-intensive. In NFV-enabled MEC environment, service function chain (SFC), i.e., a set of ordered virtual network functions (VNFs), can be mapped on MEC servers. Mobile devices (MDs) can offload computation-intensive applications, which can be represented by SFCs, fully or partially to MEC servers for remote execution. This paper studies the partial offloading and SFC mapping joint optimization (POSMJO) problem in an NFV-enabled MEC system, where an incoming task can be partitioned into two parts, one for local execution and the other for remote execution. The objective is to minimize the average cost in the long term which is a combination of execution delay, MD's energy consumption, and usage charge for edge computing. This problem consists of two closely related decision-making steps, namely task partition and VNF placement, which is highly complex and quite challenging. To address this, we propose a cooperative dual-agent deep reinforcement learning (CDADRL) algorithm, where we design a framework enabling interaction between two agents. Simulation results show that the proposed algorithm outperforms three combinations of deep reinforcement learning algorithms in terms of cumulative and average episodic rewards and it overweighs a number of baseline algorithms with respect to execution delay, energy consumption, and usage charge.
翻译:多接入边缘计算(MEC)和网络功能虚拟化(NFV)是支持新兴的IOT应用,特别是计算密集型应用的有希望的技术。在由NFV支持的MEC环境中,可以对服务功能链(SFC)进行绘图,即一套订购的虚拟网络功能(VNFs),可以在MEC服务器上进行测绘。移动设备(MDs)可以卸载计算密集型应用,可由SFCs完全或部分代表到MEC服务器进行远程执行。本文研究的是,在由NFV支持的MEC系统中,部分卸载和SFC绘制联合优化(POSMJO)的问题。在该系统中,即将完成的任务可以分为两个部分,一个是局部执行,一个是服务功能链,一个是服务链,另一个是远程执行。目标是尽可能降低执行延迟、MDR的能源消耗量和边际计算使用费。这个问题由两个密切相关的决策步骤组成步骤组成,即任务分配和VNFFS安排,这是非常复杂和相当具有挑战性的。为了解决这个问题,我们建议用两个合作性的双重代理机构深度递增级的耗能性消费逻辑学的消费逻辑框架,一个是模拟递增级的递增缩缩算法,用来设计三的递增缩缩缩算。