Although Reinforcement Learning (RL) is effective for sequential decision-making problems under uncertainty, it still fails to thrive in real-world systems where risk or safety is a binding constraint. In this paper, we formulate the RL problem with safety constraints as a non-zero-sum game. While deployed with maximum entropy RL, this formulation leads to a safe adversarially guided soft actor-critic framework, called SAAC. In SAAC, the adversary aims to break the safety constraint while the RL agent aims to maximize the constrained value function given the adversary's policy. The safety constraint on the agent's value function manifests only as a repulsion term between the agent's and the adversary's policies. Unlike previous approaches, SAAC can address different safety criteria such as safe exploration, mean-variance risk sensitivity, and CVaR-like coherent risk sensitivity. We illustrate the design of the adversary for these constraints. Then, in each of these variations, we show the agent differentiates itself from the adversary's unsafe actions in addition to learning to solve the task. Finally, for challenging continuous control tasks, we demonstrate that SAAC achieves faster convergence, better efficiency, and fewer failures to satisfy the safety constraints than risk-averse distributional RL and risk-neutral soft actor-critic algorithms.


翻译:虽然强化学习(RL)在不确定情况下对顺序决策问题有效,但在现实世界系统中,风险或安全是约束性制约因素,它仍然未能在现实世界系统中兴起。在本文中,我们将安全限制问题作为非零和游戏来表述。虽然在最大变温RL的部署中,这种配方可以导致一个安全的对抗性引导软体行为者-批评框架,称为SAAC。在SAAC中,敌对方的目的是打破安全限制,而RL代理商的目的是尽量扩大对手政策下的限制价值功能。对代理人价值功能的安全限制只是作为代理人和对手政策之间的一个反弹术语。与以往的做法不同,SAAC可以处理不同的安全标准,如安全勘探、中度风险敏感性和CVAR类似的一致风险敏感性。我们说明了这些制约的对手设计。然后,在每一种变异端中,我们展示了代理人除了学习解决这项任务之外还把自己与对手的不安全行动区别开来。最后,对于代理人价值功能的安全限制只是表现为代理人和对手政策之间的一个反差的术语。与以前的做法不同,我们证明SAAC能够更快速地稳定、更接近、更接近于安全性风险。

0
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
38+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年8月26日
Arxiv
1+阅读 · 2022年8月22日
A Multi-Objective Deep Reinforcement Learning Framework
VIP会员
相关VIP内容
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
38+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员