Reference-based line-art colorization is a challenging task in computer vision. The color, texture, and shading are rendered based on an abstract sketch, which heavily relies on the precise long-range dependency modeling between the sketch and reference. Popular techniques to bridge the cross-modal information and model the long-range dependency employ the attention mechanism. However, in the context of reference-based line-art colorization, several techniques would intensify the existing training difficulty of attention, for instance, self-supervised training protocol and GAN-based losses. To understand the instability in training, we detect the gradient flow of attention and observe gradient conflict among attention branches. This phenomenon motivates us to alleviate the gradient issue by preserving the dominant gradient branch while removing the conflict ones. We propose a novel attention mechanism using this training strategy, Stop-Gradient Attention (SGA), outperforming the attention baseline by a large margin with better training stability. Compared with state-of-the-art modules in line-art colorization, our approach demonstrates significant improvements in Fr\'echet Inception Distance (FID, up to 27.21%) and structural similarity index measure (SSIM, up to 25.67%) on several benchmarks. The code of SGA is available at https://github.com/kunkun0w0/SGA .


翻译:在计算机视野中,基于参考的线-线-艺术色彩化是一项具有挑战性的任务。颜色、纹理和阴影是建立在抽象草图基础上的,它在很大程度上依赖于草图和参考之间的精确的长距离依赖模型; 连接跨模式信息和长距离依赖模型的流行技术采用了关注机制; 但是,在基于参考的线-艺术色彩化背景下,几种技术会加剧现有的培训困难,例如,自监督的培训协议和基于GAN的损失。为了了解培训的不稳定性,我们发现注意的梯度流动,并观察关注分支之间的梯度冲突。 这一现象激励我们通过在消除冲突时保留主导梯度分支来缓解梯度问题。我们建议采用新的关注机制,使用这一培训战略,即停止关注,以更好的培训稳定性大大超过关注基线。与在线颜色化中的状态-艺术模块相比,我们的方法显示Fr\'chetch Incepion Lear(FID,最高为27.21%)和结构相似度问题。在SGA/SGA第25/10号标准上,可提供若干类似性指标。

0
下载
关闭预览

相关内容

《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年9月7日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员