In this paper, we consider the color-plus-mono dual-camera system and propose an end-to-end convolutional neural network to align and fuse images from it in an efficient and cost-effective way. Our method takes cross-domain and cross-scale images as input, and consequently synthesizes HR colorization results to facilitate the trade-off between spatial-temporal resolution and color depth in the single-camera imaging system. In contrast to the previous colorization methods, ours can adapt to color and monochrome cameras with distinctive spatial-temporal resolutions, rendering the flexibility and robustness in practical applications. The key ingredient of our method is a cross-camera alignment module that generates multi-scale correspondences for cross-domain image alignment. Through extensive experiments on various datasets and multiple settings, we validate the flexibility and effectiveness of our approach. Remarkably, our method consistently achieves substantial improvements, i.e., around 10dB PSNR gain, upon the state-of-the-art methods. Code is at: https://github.com/IndigoPurple/CCDC
翻译:在本文中,我们考虑的是彩色+海洋双镜头系统,并提议一个端到端的时空神经网络,以便以高效和具有成本效益的方式对图像进行组合和组合。我们的方法是以跨域和跨尺度图像作为输入,从而合成HR的颜色化结果,以便利空间时空分辨率和单摄像系统颜色深度之间的权衡。与以往的颜色化方法相比,我们的方法可以适应色和单色相机,具有独特的空间-时间分辨率,在实际应用中具有灵活性和稳健性。我们方法的关键成分是一个交叉相机调整模块,生成跨域图像对齐的多尺度对应。通过对多个数据集和多个环境的广泛实验,我们验证了我们方法的灵活性和有效性。值得注意的是,我们的方法在最先进的方法上不断取得重大改进,即大约10dB PSNR收益。代码在https://github.com/IndigoPurple/DC-state方法上是:https://github. com/IndigoPROPL/CDC。