Camera motion introduces spatially varying blur due to the depth changes in the 3D world. This work investigates scene configurations where such blur is produced under parallax camera motion. We present a simple, yet accurate, Image Compositing Blur (ICB) model for depth-dependent spatially varying blur. The (forward) model produces realistic motion blur from a single image, depth map, and camera trajectory. Furthermore, we utilize the ICB model, combined with a coordinate-based MLP, to learn a sharp neural representation from the blurred input. Experimental results are reported for synthetic and real examples. The results verify that the ICB forward model is computationally efficient and produces realistic blur, despite the lack of occlusion information. Additionally, our method for restoring a sharp representation proves to be a competitive approach for the deblurring task.
翻译:相机运动由于3D世界的深度变化而引入了空间差异的模糊。 这项工作调查了在Pallax相机运动下产生这种模糊的场景配置。 我们提出了一个简单而准确的图像合成模糊( ICB) 模型, 用于深度依赖空间差异的模糊。 ( 向前) 模型产生与单一图像、 深度映射和相机轨迹相模糊的现实动作。 此外, 我们使用ICB 模型, 加上一个基于协调的 MLP, 来学习模糊输入的清晰神经代表。 实验结果被报告为合成和真实例子。 结果证实ICB 远方模型在计算上效率高, 并且尽管缺少隐蔽信息, 却产生了现实的模糊性。 此外, 我们恢复清晰代表的方法被证明是对模糊任务的一种竞争性方法 。</s>