Diffusion models have the ability to generate high quality images by denoising pure Gaussian noise images. While previous research has primarily focused on improving the control of image generation through adjusting the denoising process, we propose a novel direction of manipulating the initial noise to control the generated image. Through experiments on stable diffusion, we show that blocks of pixels in the initial latent images have a preference for generating specific content, and that modifying these blocks can significantly influence the generated image. In particular, we show that modifying a part of the initial image affects the corresponding region of the generated image while leaving other regions unaffected, which is useful for repainting tasks. Furthermore, we find that the generation preferences of pixel blocks are primarily determined by their values, rather than their position. By moving pixel blocks with a tendency to generate user-desired content to user-specified regions, our approach achieves state-of-the-art performance in layout-to-image generation. Our results highlight the flexibility and power of initial image manipulation in controlling the generated image.
翻译:暂无翻译