Generalized linear mixed models (GLMMs) are commonly used to analyze correlated discrete or continuous response data. In Bayesian GLMMs, the often-used improper priors may yield undesirable improper posterior distributions. Thus, verifying posterior propriety is crucial for valid applications of Bayesian GLMMs with improper priors. Here, we consider the popular improper uniform prior on the regression coefficients and several proper or improper priors, including the widely used gamma and power priors on the variance components of the random effects. We also construct an approximate Jeffreys' prior for objective Bayesian analysis of GLMMs. We derive necessary and sufficient conditions for posterior propriety for Bayesian GLMMs where the response variables have distributions from the exponential family. For the two most widely used GLMMs, namely, the binomial and Poisson GLMMs, we further refine our results by providing easily verifiable conditions compared to the currently available results. Finally, we use examples involving one-way and two-way random effects models to demonstrate the theoretical results derived here.
翻译:通用线性混合模型(GLMMs)通常用于分析相关离散或连续响应数据。在巴伊西亚GLMMs中,经常使用的不当前科可能会产生不适当的后部分布。 因此,核实后部特性对于巴伊西亚GLMMs的正确应用和不适当的前科至关重要。 在这里,我们认为,在回归系数和若干适当或不适当的前科之前流行的不适当统一,包括广泛使用的伽马和随机效应差异部分的先导力。 我们还在对GLMs进行巴伊西亚客观分析之前,建立了近似Jeffers的先导力。 我们为Bayesian GLMMs的后端特性获取必要和充分的条件,因为响应变量的分布来自指数家族。 对于最广泛使用的GLMMs,即二元和皮奥森GLMMs,我们通过提供与现有结果比较容易核查的条件来进一步改进我们的结果。 最后,我们用单向和双向随机效应模型来证明这里得出的理论结果。