We present DeepSAT, a novel end-to-end learning framework for the Boolean satisfiability (SAT) problem. Unlike existing solutions trained on random SAT instances with relatively weak supervisions, we propose applying the knowledge of the well-developed electronic design automation (EDA) field for SAT solving. Specifically, we first resort to advanced logic synthesis algorithms to pre-process SAT instances into optimized and-inverter graphs (AIGs). By doing so, our training and test sets have a unified distribution, thus the learned model can generalize well to test sets of various sources of SAT instances. Next, we regard the distribution of SAT solutions being a product of conditional Bernoulli distributions. Based on this observation, we approximate the SAT solving procedure with a conditional generative model, leveraging a directed acyclic graph neural network with two polarity prototypes for conditional SAT modeling. To effectively train the generative model, with the help of logic simulation tools, we obtain the probabilities of nodes in the AIG being logic '1' as rich supervision. We conduct extensive experiments on various SAT instances. DeepSAT achieves significant accuracy improvements over state-of-the-art learning-based SAT solutions, especially when generalized to SAT instances that are large or with diverse distributions.
翻译:我们提出DeepSAT,这是关于布利安可探测性(SAT)问题的新颖的端到端学习框架;与在随机的SAT情况下培训的、监管较弱的现有解决方案不同,我们提议应用先进的电子设计自动化(EDA)领域知识解决SAT。具体地说,我们首先采用先进的逻辑合成算法,将SAT的预处理过程纳入优化和垂直图形(AIGs)中。这样,我们的培训和测试组就有一个统一的分布,因此,学习的模型可以很好地概括地测试各种SAT实例。接下来,我们认为SAT解决方案的分布是伯诺利有条件分布的产物。根据这一观察,我们用一个有条件的基因模型来接近SAT的解决程序。我们利用一个定向的环球图神经网络,用两个极极原型模型来进行有条件的SAT建模。通过逻辑模拟工具的帮助,有效地培训基因化模型,我们获得了AIG的节点的概率,即逻辑的改进“1”的概率,我们把SAT的分布视为一种有条件的Bernoululal分布。我们进行了广泛的实验,在各种卫星的分布模型中特别的模型中,在各种普遍化的模型中进行大规模的实验,在各种卫星的模型中,在大规模的模型中,在大规模的模型中,在大规模的模型中进行学习中进行大规模的实验中进行。