Complex networks are graphs representing real-life systems that exhibit unique characteristics not found in purely regular or completely random graphs. The study of such systems is vital but challenging due to the complexity of the underlying processes. This task has nevertheless been made easier in recent decades thanks to the availability of large amounts of networked data. Link prediction in complex networks aims to estimate the likelihood that a link between two nodes is missing from the network. Links can be missing due to imperfections in data collection or simply because they are yet to appear. Discovering new relationships between entities in networked data has attracted researchers' attention in various domains such as sociology, computer science, physics, and biology. Most existing research focuses on link prediction in undirected complex networks. However, not all real-life systems can be faithfully represented as undirected networks. This simplifying assumption is often made when using link prediction algorithms but inevitably leads to loss of information about relations among nodes and degradation in prediction performance. This paper introduces a link prediction method designed explicitly for directed networks. It is based on the similarity-popularity paradigm, which has recently proven successful in undirected networks. The presented algorithms handle the asymmetry in node relationships by modeling it as asymmetry in similarity and popularity. Given the observed network topology, the algorithms approximate the hidden similarities as shortest path distances using edge weights that capture and factor out the links' asymmetry and nodes' popularity. The proposed approach is evaluated on real-life networks, and the experimental results demonstrate its effectiveness in predicting missing links across a broad spectrum of networked data types and sizes.


翻译:复杂网络的预测旨在估计两个节点之间在网络中缺少联系的可能性; 链接可能由于数据收集中的不完善或仅仅因为尚未出现,而缺乏联系; 发现网络数据中各实体之间的新关系在社会学、计算机科学、物理和生物学等各个领域引起了研究人员的注意; 大多数现有的广泛研究侧重于在非定向复杂网络中将预测联系起来; 然而,并非所有实际生活系统都能够忠实地作为非定向网络。 复杂网络中的链接预测旨在估计在网络中缺少两个节点之间联系的可能性; 由于数据收集中的不完善或只是由于尚未出现,因此可能缺乏联系; 发现网络数据中各实体之间的新关系,在社会学、计算机科学、物理和生物学等各个领域引起了研究人员的注意。 大多数现有的广泛研究侧重于将非定向复杂网络中的预测联系起来。 然而,并非所有真实生活系统都能够忠实地作为非定向网络网络网络的网络。 这种简化的假设常常在使用链接时导致失去关于各节点之间和预测性业绩中出现的关系的信息。 本文介绍了一种明确为定向网络设计的链接预测方法。 它基于相似的频谱类型模式模式,最近证明在非定向网络中成功使用了非定向网络的网络的准确性联系; 所观察到的准确性, 以显示的准确性关系, 其最深层和最深层的网络的精确性关系,在模拟和最深层的精确性关系是地标法是,在模拟和最深层的精确性关系,在模拟的精确性关系,在模拟性关系中显示其所观测。

0
下载
关闭预览

相关内容

网络中的链路预测(Link Prediction)是指如何通过已知的网络节点以及网络结构等信息预测网络中尚未产生连边的两个节点之间产生链接的可能性。这种预测既包含了对未知链接(exist yet unknown links)的预测也包含了对未来链接(future links)的预测。该问题的研究在理论和应用两个方面都具有重要的意义和价值 。
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年9月8日
Arxiv
57+阅读 · 2021年5月3日
Arxiv
20+阅读 · 2019年11月23日
Arxiv
26+阅读 · 2018年2月27日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员