Non-invasive mobile electroencephalography (EEG) acquisition systems have been utilized for long-term monitoring of seizures, yet they suffer from limited battery life. Resistive random access memory (RRAM) is widely used in computing-in-memory(CIM) systems, which offers an ideal platform for reducing the computational energy consumption of seizure prediction algorithms, potentially solving the endurance issues of mobile EEG systems. To address this challenge, inspired by neuronal mechanisms, we propose a RRAM-based bio-inspired circuit system for correlation feature extraction and seizure prediction. This system achieves a high average sensitivity of 91.2% and a low false positive rate per hour (FPR/h) of 0.11 on the CHB-MIT seizure dataset. The chip under simulation demonstrates an area of approximately 0.83 mm2 and a latency of 62.2 {\mu}s. Power consumption is recorded at 24.4 mW during the feature extraction phase and 19.01 mW in the seizure prediction phase, with a cumulative energy consumption of 1.515 {\mu}J for a 3-second window data processing, predicting 29.2 minutes ahead. This method exhibits an 81.3% reduction in computational energy relative to the most efficient existing seizure prediction approaches, establishing a new benchmark for energy efficiency.
翻译:暂无翻译