Deep learning networks have demonstrated state-of-the-art performance on medical image analysis tasks. However, the majority of the works rely heavily on abundantly labeled data, which necessitates extensive involvement of domain experts. Vision transformer (ViT) based generative adversarial networks (GANs) recently demonstrated superior potential in general image synthesis, yet are less explored for histopathology images. In this paper, we address these challenges by proposing a pure ViT-based conditional GAN model for histopathology image synthetic augmentation. To alleviate training instability and improve generation robustness, we first introduce a conditioned class projection method to facilitate class separation. We then implement a multi-loss weighing function to dynamically balance the losses between classification tasks. We further propose a selective augmentation mechanism to actively choose the appropriate generated images and bring additional performance improvements. Extensive experiments on the histopathology datasets show that leveraging our synthetic augmentation framework results in significant and consistent improvements in classification performance.
翻译:深层学习网络在医学图像分析任务方面表现出了最先进的表现。然而,大部分工程都严重依赖大量标签数据,这就需要领域专家的广泛参与。基于视觉变压器的基因对抗网络(GANs)最近在一般图像合成中显示出了超强的潜力,但对于组织病理学图像的探索却较少。在本文件中,我们通过提出一个纯基于VIT的有条件GAN模型来增加组织病理学图像合成增长来应对这些挑战。为了减轻培训不稳定性,提高生成强度,我们首先采用了一种有条件的班级预测方法,以便利阶级分离。然后我们实施一种多重减重功能,以动态平衡分类任务之间的损失。我们进一步提议一个选择性增强机制,积极选择生成的适当图像,并带来更多的性能改进。关于其病理学数据集的广泛实验表明,利用我们的合成增强框架可以显著和一致地改进分类性能。