The aim of this paper is to describe a novel non-parametric noise reduction technique from the point of view of Bayesian inference that may automatically improve the signal-to-noise ratio of one- and two-dimensional data, such as e.g. astronomical images and spectra. The algorithm iteratively evaluates possible smoothed versions of the data, the smooth models, obtaining an estimation of the underlying signal that is statistically compatible with the noisy measurements. Iterations stop based on the evidence and the $\chi^2$ statistic of the last smooth model, and we compute the expected value of the signal as a weighted average of the whole set of smooth models. In this paper, we explain the mathematical formalism and numerical implementation of the algorithm, and we evaluate its performance in terms of the peak signal to noise ratio, the structural similarity index, and the time payload, using a battery of real astronomical observations. Our Fully Adaptive Bayesian Algorithm for Data Analysis (FABADA) yields results that, without any parameter tuning, are comparable to standard image processing algorithms whose parameters have been optimized based on the true signal to be recovered, something that is impossible in a real application. State-of-the-art non-parametric methods, such as BM3D, offer slightly better performance at high signal-to-noise ratio, while our algorithm is significantly more accurate for extremely noisy data (higher than $20-40\%$ relative errors, a situation of particular interest in the field of astronomy). In this range, the standard deviation of the residuals obtained by our reconstruction may become more than an order of magnitude lower than that of the original measurements. The source code needed to reproduce all the results presented in this report, including the implementation of the method, is publicly available at https://github.com/PabloMSanAla/fabada
翻译:本文的目的是从巴伊西亚州推论的角度描述一种新型的非参数噪音减少技术,这种技术可以自动改善一维和二维数据(如天文图像和光谱)的信号比比值,例如天文学图像和光谱。算法迭代地评估数据可能的平滑版本、光滑模型,获得与噪音测量相匹配的基本信号的估计。根据证据和上一个光滑模型的美元=2美元统计,循环停止使用信号的预期值,我们将信号的预期值作为整个平滑模型的加权平均值。在本文件中,我们解释了算法的数学形式学和数字执行率,我们用最高峰信号对噪音比率、结构相似指数和时间有效载荷的性能来评估数据,我们完全适应Bayesla Agoritm用于数据分析(FABADADA)的结果,在没有任何参数调整的情况下,可以与标准图像处理法的域值相比,其相对直径比整个平流模型模型的加权平均数平均值。我们解释算法的数学和数字算法的数学的数学的数学执行率值比实际值要小得多,而这种精确的数值则在真实的数值的数值中,在真实的数值中,在真实的数值中,在最接近的数值中,这种精确的计算方法中,在最接近的值的值的值值的值的值的值的值中,在最值的值的值的值值中,在最值的值的值的值的值的值的值的值的值中,在最值的值的值的值的值是比在最值的值的值的值的值的值的值的值中,在最值值值值值值值值值值值值值值值值值值的值的值的值的值的值的值的值的值值值值值值的值的值的值的值的值的值的值的值值值值值值值值值的值值值值值值值值值值值上,在最值值值值中,在最值上,在最值值值的值的值的值的值的值的值的值的值的值的值的值值值是比值值的值的值值值值值值值值值值上,在最值值