We propose two Hybrid High-Order (HHO) methods for the incompressible Navier-Stokes equations and investigate their robustness with respect to the Reynolds number. While both methods rely on a HHO formulation of the viscous term, the pressure-velocity coupling is fundamentally different, up to the point that the two approaches can be considered antithetical. The first method is kinetic energy preserving, meaning that the skew-symmetric discretization of the convective term is guaranteed not to alter the kinetic energy balance. The approximated velocity fields exactly satisfy the divergence free constraint and continuity of the normal component of the velocity is weakly enforced on the mesh skeleton, leading to H-div conformity. The second scheme relies on Godunov fluxes for pressure-velocity coupling: a Harten, Lax and van Leer (HLL) approximated Riemann Solver designed for cell centered formulations is adapted to hybrid face centered formulations. The resulting numerical scheme is robust up to the inviscid limit, meaning that it can be applied for seeking approximate solutions of the incompressible Euler equations. The schemes are numerically validated performing steady and unsteady two dimensional test cases and evaluating the convergence rates on h-refined mesh sequences. In addition to standard benchmark flow problems, specifically conceived test cases are conducted for studying the error behaviour when approaching the inviscid limit.
翻译:我们为压抑性纳维埃-斯托克方程式建议了两种混合高分解法(HHO) 。 虽然两种方法都依赖HHHO对粘度术语的配方, 压力- 速度结合从根本上是不同的, 直至两种方法可被视为反神话。 第一种方法是运动能量保存, 也就是说, 脉冲术语的斜度- 对称分解不会改变动能平衡。 近似速度字段完全满足速度中正常部分的偏差自由限制和连续性, 而在网状骨架上则执行得不力, 导致H- div的兼容性。 第二种方法依靠Godunov通气压- 速度结合: Harten, Lax 和van Leer (HLLL) 近似Riemann Solveger, 用于细胞中枢配方的近Riemann Solveerger, 被调整为混合面中位组合。 由此得出的数字方案坚固不差, 意味着它可以应用于反射限制, 意味着它来寻找流态趋和趋同级的趋一致的趋一致的测测测测测测的曲线中, 。