Parameter reconstructions are indispensable in metrology. Here, on wants to explain $K$ experimental measurements by fitting to them a parameterized model of the measurement process. The model parameters are regularly determined by least-square methods, i.e., by minimizing the sum of the squared residuals between the $K$ model predictions and the $K$ experimental observations, $\chi^2$. The model functions often involve computationally demanding numerical simulations. Bayesian optimization methods are specifically suited for minimizing expensive model functions. However, in contrast to least-square methods such as the Levenberg-Marquardt algorithm, they only take the value of $\chi^2$ into account, and neglect the $K$ individual model outputs. We introduce a Bayesian target-vector optimization scheme that considers all $K$ contributions of the model function and that is specifically suited for parameter reconstruction problems which are often based on hundreds of observations. Its performance is compared to established methods for an optical metrology reconstruction problem and two synthetic least-squares problems. The proposed method outperforms established optimization methods. It also enables to determine accurate uncertainty estimates with very few observations of the actual model function by using Markov chain Monte Carlo sampling on a trained surrogate model.
翻译:参数重建在计量学中是不可或缺的。 这里, 想要解释 $ K$ 的实验测量方法, 为其配置一个测量过程的参数模型模型。 模型参数通常由最低平方法确定, 即将模型预测和实验观测之间平方残余的总和最小化, 即: 美元模型预测和 美元实验观测之间的平方余值最小化, $\ chi_ 2美元。 模型函数通常涉及计算要求数字模拟。 巴伊西亚优化方法特别适合尽量减少昂贵的模型功能。 但是, 与Levenberg- Marquardt 算法等最低平方法相比, 模型参数参数参数参数参数参数参数的优化方法仅考虑 $\ chi_ 2美元的价值, 并且忽略了 $ K$ 的单个模型输出。 我们引入了一种考虑到模型函数所有K$贡献并特别适合参数重建问题的巴耶西亚目标- 目标- 矢量优化方案, 通常基于数百个观测结果。 模型的性能与既定的光计量问题和两个合成最低方位数的合成方法作比较。 拟议的方法比拟方法差模型的模型的模型的模型, 并用经过训练的模型的模型的模型的模型来确定精确的模型的模型的模型的模型的模型的精确性估算。