We propose, study, and compute solutions to a class of optimal control problems for hyperbolic systems of conservation laws and their viscous regularization. We take barotropic compressible Navier--Stokes equations (BNS) as a canonical example. We first apply the entropy--entropy flux--metric condition for BNS. We select an entropy function and rewrite BNS to a summation of flux and metric gradient of entropy. We then develop a metric variational problem for BNS, whose critical points form a primal-dual BNS system. We design a finite difference scheme for the variational system. The numerical approximations of conservation laws are implicit in time. We solve the variational problem with an algorithm inspired by the primal-dual hybrid gradient method. This includes a new method for solving implicit time approximations for conservation laws, which seems to be unconditionally stable. Several numerical examples are presented to demonstrate the effectiveness of the proposed algorithm.
翻译:我们提出,研究,并计算出对双曲保护法体系的最佳控制问题及其粘度正规化的一类解决方案。我们以野生压压缩纳维-斯托克方程式(BNS)为例。我们首先对BNS应用对球-多热带通量测量条件。我们选择了一种环球函数,并将BNS改写成对通量和宽度梯度的总和。然后,我们为BNS开发了一个参数变异问题,因为BNS的临界点形成一个初级双向BNS系统。我们为变异系统设计了一个限定的差别方案。我们隐含着保护法的数值近似值。我们用一种由原始-双极混合梯度法启发的算法来解决变异问题。这包括一种解决保护法隐含的时间近似无条件稳定的新方法。我们提出了几个数字例子,以证明拟议算法的有效性。