Group synchronization asks to recover group elements from their pairwise measurements. It has found numerous applications across various scientific disciplines. In this work, we focus on orthogonal and permutation group synchronization which are widely used in computer vision such as object matching and structure from motion. Among many available approaches, the spectral methods have enjoyed great popularity due to their efficiency and convenience. We will study the performance guarantees of the spectral methods in solving these two synchronization problems by investigating how well the computed eigenvectors approximate each group element individually. We establish our theory by applying the recent popular~\emph{leave-one-out} technique and derive a~\emph{block-wise} performance bound for the recovery of each group element via eigenvectors. In particular, for orthogonal group synchronization, we obtain a near-optimal performance bound for the group recovery in presence of additive Gaussian noise. For permutation group synchronization under random corruption, we show that the widely-used two-step procedure (spectral method plus rounding) can recover all the group elements exactly if the SNR (signal-to-noise ratio) is close to the information theoretical limit. Our numerical experiments confirm our theory and indicate a sharp phase transition for the exact group recovery.
翻译:群集同步要求从对称测量中回收组元素 。 它在不同的科学学科中发现了许多应用 。 在这项工作中, 我们侧重于正方形和变异组同步, 在计算机视觉中广泛使用这些同步, 比如对象匹配和运动结构 。 在许多可用的方法中, 光谱方法因其效率和方便性而非常受欢迎 。 我们将研究光谱方法的性能保障, 以解决这两个同步问题 。 我们通过调查计算出的精密元素对每个组元素的个别匹配程度, 研究光谱方法的性能保障 。 我们通过应用最近的流行 ⁇ emph{ left- one- out} 技术来建立我们的理论, 并且通过 igenvectors 来生成每个组元素 。 特别是, 对于正方形组的同步性能, 我们会在添加高尔西亚噪音的情况下, 获得接近最佳的光谱的性能 。 对于随机腐败下的变异性组, 我们展示了广泛使用的两步程序( 光谱法加圆法) 可以完全回收所有组元素, 如果 SNR( int- ) 和精确的实验 。