This paper presents a new approach for assembling graph neural networks based on framelet transforms. The latter provides a multi-scale representation for graph-structured data. With the framelet system, we can decompose the graph feature into low-pass and high-pass frequencies as extracted features for network training, which then defines a framelet-based graph convolution. The framelet decomposition naturally induces a graph pooling strategy by aggregating the graph feature into low-pass and high-pass spectra, which considers both the feature values and geometry of the graph data and conserves the total information. The graph neural networks with the proposed framelet convolution and pooling achieve state-of-the-art performance in many types of node and graph prediction tasks. Moreover, we propose shrinkage as a new activation for the framelet convolution, which thresholds the high-frequency information at different scales. Compared to ReLU, shrinkage in framelet convolution improves the graph neural network model in terms of denoising and signal compression: noises in both node and structure can be significantly reduced by accurately cutting off the high-pass coefficients from framelet decomposition, and the signal can be compressed to less than half its original size with the prediction performance well preserved.


翻译:本文展示了基于框架变换的图形神经网络的组合新方法。 后者为图形结构数据提供了一个多尺度的表达面。 有了框架网系统, 我们可以将图形特征分解成低通道和高通道频率, 作为网络培训的提取特征, 从而定义基于框架的图形变化。 框架网分解自然地通过将图形特征合并到低通道和高通道光谱中, 将图形特征合并到低通道和高通道光谱中, 既考虑图形数据的特征值和几何, 也保存了全部信息。 与拟议框架相联和集合的图形神经网络可以在许多类型的节点和图形预测任务中实现最先进的性能。 此外, 我们提议将缩小作为框架图变异性的新激活, 将高频信息定在不同的尺度上。 与 ReLU 相比, 框架变现的缩缩放改进了图形神经网络模型的解调和信号压缩: 节点和结构中的噪音都可以通过精确地将高通道系数从最初的基质变变变变变小到最慢的图像变小状态, 。

21
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
121+阅读 · 2020年11月20日
【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
25+阅读 · 2020年7月19日
【ICML2020】持续图神经网络,Continuous Graph Neural Networks
专知会员服务
146+阅读 · 2020年6月28日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
152+阅读 · 2020年5月26日
【阿尔托大学】图神经网络,Graph Neural Networks,附60页ppt
专知会员服务
178+阅读 · 2020年4月26日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
30+阅读 · 2020年4月15日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
基于注意力机制的图卷积网络
科技创新与创业
73+阅读 · 2017年11月8日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Arxiv
0+阅读 · 2021年4月8日
Arxiv
9+阅读 · 2020年10月29日
Position-aware Graph Neural Networks
Arxiv
15+阅读 · 2019年6月11日
Arxiv
23+阅读 · 2018年10月24日
Arxiv
23+阅读 · 2018年10月1日
Arxiv
9+阅读 · 2018年2月4日
Arxiv
7+阅读 · 2018年1月10日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
基于注意力机制的图卷积网络
科技创新与创业
73+阅读 · 2017年11月8日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
相关论文
Arxiv
0+阅读 · 2021年4月8日
Arxiv
9+阅读 · 2020年10月29日
Position-aware Graph Neural Networks
Arxiv
15+阅读 · 2019年6月11日
Arxiv
23+阅读 · 2018年10月24日
Arxiv
23+阅读 · 2018年10月1日
Arxiv
9+阅读 · 2018年2月4日
Arxiv
7+阅读 · 2018年1月10日
Top
微信扫码咨询专知VIP会员