With the rise of the digital economy and an explosion of available information on consumers, effective personalization of offers, goods, and services has become a core business focus for companies to improve revenues and maintain competitive edge. This paper studies the personalization problem through the lens of policy learning, where the goal is to learn a decision-making rule (a policy) that maps from consumer and product characteristics (features) to recommendations (actions) in order to optimize outcomes (rewards). We focus on using available historical data for offline learning with unknown data collection procedure. Importantly, in many business and medical settings, interpretability of a policy is essential. To address these challenges, we study the class of policies with linear decision boundaries and propose learning algorithms using tools from causal inference. We propose several optimization schemes to solve the associated non-convex, non-smooth optimization problem, and find that an adapted Bayesian optimization algorithm is fast and effective. We test our algorithm with extensive simulation studies and apply it to an online marketplace customer purchase dataset, where the learned policy outputs a personalized discount recommendation based on customer and product features in order to maximize gross merchandise value (GMV) for sellers. Our learned policy improves upon the platform's baseline by 88.2\% in net sales revenue, while also providing informative insights on which features are important for the decision-making process, e.g. when "Attribute 2" is large, marginal increase in GMV is low for discounts higher than 10\%. Our findings suggest that the proposed policy learning algorithm provides a promising practical approach for interpretable personalization across a wide range of applications.


翻译:随着数字经济的兴起和关于消费者的现有信息的爆炸性,报价、商品和服务的有效个性化已经成为公司改善收入和保持竞争优势的核心商业重点。本文从政策学习的角度研究个性化问题,目的是学习一种决策规则(一种政策),从消费者和产品特点(特点)到建议(行动)绘制地图,以优化结果(奖励)。我们注重利用现有的历史数据进行离线学习,采用未知的数据收集程序。重要的是,在许多商业和医疗环境中,一项政策的可解释性至关重要。为了应对这些挑战,我们研究具有线性决定界限的政策类别,并利用因果推断工具提出学习算法。我们提出若干优化计划,以解决相关的非convex、非脉冲优化问题,并发现调整后的Bayesian最优化算法是快速有效的。我们用广泛的模拟研究测试我们的算法,并将其应用于在线市场低客户购买数据集。我们所学的政策产出基于客户和产品特性的个人化贴现贴现建议,目的是最大限度地提高al-88年的销售商总基线值。我们提出的一个在线政策解释方法是“在销售过程中提供重要的基本价值,我们从销售中可以提供重要的排序。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
23+阅读 · 2022年2月24日
Financial Time Series Representation Learning
Arxiv
10+阅读 · 2020年3月27日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员