Accurate localization on autonomous driving cars is essential for autonomy and driving safety, especially for complex urban streets and search-and-rescue subterranean environments where high-accurate GPS is not available. However current odometry estimation may introduce the drifting problems in long-term navigation without robust global localization. The main challenges involve scene divergence under the interference of dynamic environments and effective perception of observation and object layout variance from different viewpoints. To tackle these challenges, we present PSE-Match, a viewpoint-free place recognition method based on parallel semantic analysis of isolated semantic attributes from 3D point-cloud models. Compared with the original point cloud, the observed variance of semantic attributes is smaller. PSE-Match incorporates a divergence place learning network to capture different semantic attributes parallelly through the spherical harmonics domain. Using both existing benchmark datasets and two in-field collected datasets, our experiments show that the proposed method achieves above 70% average recall with top one retrieval and above 95% average recall with top ten retrieval cases. And PSE-Match has also demonstrated an obvious generalization ability with a limited training dataset.
翻译:自动驾驶汽车的精确定位对于自主和驾驶安全至关重要,对于复杂的城市街道和搜索和再恢复地下环境而言,对于自主和驾驶安全至关重要,特别是对于没有高精确全球定位系统的复杂城市街道和搜索和再恢复地下环境而言。然而,目前的odophat 估计可能会在没有强大的全球定位的情况下引入长期航行中的漂移问题。主要的挑战包括动态环境干扰下的场景差异,以及从不同角度对观测和天体布局差异的有效认识。为了应对这些挑战,我们提出了PSE-Match,这是基于对3D点云模型中孤立的语义属性进行平行语义分析的不见地点识别方法。与原始点云相比,观察到的语义属性差异较小。 PSE-Match 包含了一个差异性学习网络,通过球体调域平行地捕捉不同的语义属性。利用现有的基准数据集和两个实地收集的数据集,我们的实验表明,拟议的方法达到了超过70%的平均回率,前一回回,超过95%的平均回回,与前十大检索案例中超过95%。PSE-Match还展示了一个明显的通用数据。