This paper introduces a highly adaptive and automated approach for generating Finite Element (FE) discretization for a given realistic multi-compartment human head model obtained through magnetic resonance imaging (MRI) dataset. We aim at obtaining accurate tetrahedral FE meshes for electroencephalographic source localization. We present recursive solid angle labeling for the surface segmentation of the model and then adapt it with a set of smoothing, inflation, and optimization routines to further enhance the quality of the FE mesh. The results show that our methodology can produce FE mesh with an accuracy greater than 1 millimeter, significant with respect to both their 3D structure discretization outcome and electroencephalographic source localization estimates. FE meshes can be achieved for the human head including complex deep brain structures. Our algorithm has been implemented using the open Matlab-based Zeffiro Interface toolbox with it effective time-effective parallel computing system.}
翻译:本文为通过磁共振成像(MRI)数据集获得的符合现实的多分解人类头型模型引入了一种高度适应性和自动化的生成精度元素分解方法。我们的目标是获得精确的四面体FE光片,用于电脑图源本地化。我们为模型表面分解提供了循环的固态角标签,然后用一套平滑、通膨和优化的例行程序对它进行调整,以进一步提高FE网的质量。结果显示,我们的方法能够产生精度大于1毫米的FE网,其精度在3D结构分解结果和电脑光学源本地化估计值方面都非常明显。我们可以用包括复杂的深层脑结构在内的人类头部的FE光片实现。我们的算法是使用基于开放的 Matlab 的 Zeffiro 界面工具箱实施的,它具有有效的时间效率的平行计算系统。}