Given a stream of Bernoulli random variables, consider the problem of estimating the mean of the random variable within a specified relative error with a specified probability of failure. Until now, the Gamma Bernoulli Approximation Scheme (GBAS) was the method that accomplished this goal using the smallest number of average samples. In this work, a new method is introduced that is faster when the mean is bounded away from zero. The process uses a two-stage process together with some simple inequalities to get rigorous bounds on the error probability.
翻译:考虑到Bernoulli 随机变量流, 请考虑在特定相对错误中估算随机变量平均值的问题, 并给出失败概率 。 到目前为止, Gamma Bernoulli 匹配计划( GBAS) 是使用平均样本数量最小的方法来实现这一目标的。 在这项工作中, 引入了新方法, 当平均值与零相隔开时, 其速度会更快 。 这一过程使用两个阶段的过程, 加上一些简单的不平等, 以获得对错误概率的严格限制 。