We propose a novel method for 3D shape completion from a partial observation of a point cloud. Existing methods either operate on a global latent code, which limits the expressiveness of their model, or autoregressively estimate the local features, which is highly computationally extensive. Instead, our method estimates the entire local feature field by a single feedforward network by formulating this problem as a tensor completion problem on the feature volume of the object. Due to the redundancy of local feature volumes, this tensor completion problem can be further reduced to estimating the canonical factors of the feature volume. A hierarchical variational autoencoder (VAE) with tiny MLPs is used to probabilistically estimate the canonical factors of the complete feature volume. The effectiveness of the proposed method is validated by comparing it with the state-of-the-art method quantitatively and qualitatively. Further ablation studies also show the need to adopt a hierarchical architecture to capture the multimodal distribution of possible shapes.


翻译:我们建议从局部观测点云中完成 3D 形状的新方法。 现有的方法要么以全球潜伏代码操作,该代码限制其模型的表达性, 要么自动递增地估计当地特征, 这种方法在计算上非常广泛。 相反, 我们的方法通过一个单一的进化前网络, 将整个本地特征字段估算成一个问题, 将这一问题描述为该对象特征量的“ 微量完成问题 ” 。 由于本地特性量的冗余, 这个 微量完成问题可以进一步降低到估计特征量的能因因素。 一个带有微小 MLPs 的等级变异自动电解码( VAE ) 用于概率性地估计整个功能量的能量因素。 拟议的方法的有效性通过定量和定性将其与状态方法进行比较而得到验证。 进一步的通货膨胀研究还表明, 有必要采用一个分级结构来捕捉到可能形状的多式分布。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员