Most evolutionary algorithms (EAs) used in practice employ crossover. In contrast, only for few and mostly artificial examples a runtime advantage from crossover could be proven with mathematical means. The most convincing such result shows that the $(\mu+1)$ genetic algorithm (GA) with population size $\mu=O(n)$ optimizes jump functions with gap size $k \ge 3$ in time $O(n^k / \mu + n^{k-1}\log n)$, beating the $\Theta(n^k)$ runtime of many mutation-based EAs. This result builds on a proof that the GA occasionally and then for an expected number of $\Omega(\mu^2)$ iterations has a population that is not dominated by a single genotype. In this work, we show that this diversity persist with high probability for a time exponential in $\mu$ (instead of quadratic). From this better understanding of the population diversity, we obtain stronger runtime guarantees, among them the statement that for all $c\ln(n)\le\mu \le n/\log n$, with $c$ a suitable constant, the runtime of the $(\mu+1)$ GA on $\mathrm{Jump}_k$, with $k \ge 3$, is $O(n^{k-1})$. Consequently, already with logarithmic population sizes, the GA gains a speed-up of order $\Omega(n)$ from crossover.
翻译:大多数实践中使用的进化运算法(EAs)都使用交叉运算。相比之下,只有为数不多而且大多是人为的例子,才能用数学手段证明交叉移转的运行时间优势。最令人信服的结果显示,人口规模为$\mu=O(n)$(GA)的(mu+1)美元基因算法(GA)以差距大小为美元=GA(3GE)优化跳跃功能(3GE)美元(3GE),美元(n)k/ mu + n<unk> k-1<unk> log n)美元。从对人口多样性的更好理解中,我们得到了更强的交叉运行保证,其中,对于所有美元(n)-1美元(mu)的运行速度值来说,GA(J)2美元(mu)美元(美元)的运行速度值不是单一的基因类型。在这项工作中,这种多样性的概率很高,以$(n-k)美元(n-k美元)的运行时间值为n-m(n_(m)美元(美元)的运行流量为n-美元。</s>