In this work, we consider the time-harmonic Maxwell's equations and their numerical solution with a domain decomposition method. As an innovative feature, we propose a feedforward neural network-enhanced approximation of the interface conditions between the subdomains. The advantage is that the interface condition can be updated without recomputing the Maxwell system at each step. The main part consists of a detailed description of the construction of the neural network for domain decomposition and the training process. To substantiate this proof of concept, we investigate a few subdomains in some numerical experiments with low frequencies. Therein the new approach is compared to a classical domain decomposition method. Moreover, we highlight current challenges of training and testing with different wave numbers and we provide information on the behaviour of the neural-network, such as convergence of the loss function, and different activation functions.
翻译:在这项工作中,我们用一个域分解法来考虑时间- 调和 Maxwell 的方程式及其数字解决方案。 作为一个创新的特性, 我们建议对子域间界面条件进行一个饲料前神经网络强化近似。 优点是界面条件可以更新, 而不在每步对 Maxwell 系统进行重新计算。 主要部分包括详细描述用于域分解和培训过程的神经网络的构造。 为了证实这个概念的证明, 我们调查了某些数字实验中以低频率进行的一些子域。 新方法与传统的域分解法相比。 此外, 我们强调目前用不同波数进行培训和测试的挑战, 我们提供有关神经网络行为的信息, 例如损失功能的趋同, 以及不同的激活功能 。</s>