Traditional semantic image search methods aim to retrieve images that match the meaning of the text query. However, these methods typically search for objects on the whole image, without considering the localization of objects within the image. This paper presents an extension of existing object detection models for semantic image search that considers the semantic alignment between object proposals and text queries, with a focus on searching for objects within images. The proposed model uses a single feature extractor, a pre-trained Convolutional Neural Network, and a transformer encoder to encode the text query. Proposal-text alignment is performed using contrastive learning, producing a score for each proposal that reflects its semantic alignment with the text query. The Region Proposal Network (RPN) is used to generate object proposals, and the end-to-end training process allows for an efficient and effective solution for semantic image search. The proposed model was trained end-to-end, providing a promising solution for semantic image search that retrieves images that match the meaning of the text query and generates semantically relevant object proposals.


翻译:传统的语义图像搜索方法旨在检索与文本查询含义相符的图像。 然而, 这些方法通常在不考虑图像中对象本地化的情况下, 在整个图像中搜索对象。 本文展示了现有的语义图像搜索对象探测模型的延伸, 以考虑对象建议和文本查询之间的语义匹配, 重点是搜索图像中的对象。 拟议的模型使用单一特征提取器、 预先培训的革命神经网络 和变压器编码器来编码文本查询。 使用对比性学习来进行建议文本对齐, 为每个建议生成一个分数, 以反映其语义与文本查询的对齐。 区域建议网络( RPN) 用于生成对象建议, 而端对端培训过程允许为语义图像搜索提供高效有效的解决方案。 拟议的模型经过培训, 终端对端, 为语义图像搜索提供了有希望的解决方案, 与文本查询的意义相符的图像检索并生成语义相关对象建议。

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
专知会员服务
31+阅读 · 2021年6月12日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
109+阅读 · 2020年3月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
12+阅读 · 2019年1月24日
Arxiv
11+阅读 · 2018年4月8日
VIP会员
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员