This paper proposes a novel self-supervised based Cut-and-Paste GAN to perform foreground object segmentation and generate realistic composite images without manual annotations. We accomplish this goal by a simple yet effective self-supervised approach coupled with the U-Net based discriminator. The proposed method extends the ability of the standard discriminators to learn not only the global data representations via classification (real/fake) but also learn semantic and structural information through pseudo labels created using the self-supervised task. The proposed method empowers the generator to create meaningful masks by forcing it to learn informative per-pixel as well as global image feedback from the discriminator. Our experiments demonstrate that our proposed method significantly outperforms the state-of-the-art methods on the standard benchmark datasets.
翻译:本文提出一种新的基于 Cut-and-Paste GAN 自我监督的新颖的GAN, 用于进行前景对象分割和生成不需手动说明的切合实际的复合图像。 我们通过简单而有效的自我监督方法, 与基于 U-Net 的歧视问题者一起实现这一目标。 提议的方法扩大了标准歧视者不仅通过分类( 真实/假的) 学习全球数据表述的能力, 而且还通过使用自监督任务创建的假标签学习语义和结构信息的能力。 提议的方法通过迫使生成者从歧视者那里学习全像素信息以及全球图像反馈,使生成者能够创建有意义的面具。 我们的实验表明,我们拟议的方法大大优于标准基准数据集上的最新方法。