In the search for more sample-efficient reinforcement-learning (RL) algorithms, a promising direction is to leverage as much external off-policy data as possible. For instance, expert demonstrations. In the past, multiple ideas have been proposed to make good use of the demonstrations added to the replay buffer, such as pretraining on demonstrations only or minimizing additional cost functions. We present a new method, able to leverage both demonstrations and episodes collected online in any sparse-reward environment with any off-policy algorithm. Our method is based on a reward bonus given to demonstrations and successful episodes (via relabeling), encouraging expert imitation and self-imitation. Our experiments focus on several robotic-manipulation tasks across two different simulation environments. We show that our method based on reward relabeling improves the performance of the base algorithm (SAC and DDPG) on these tasks. Finally, our best algorithm STIR$^2$ (Self and Teacher Imitation by Reward Relabeling), which integrates into our method multiple improvements from previous works, is more data-efficient than all baselines.


翻译:在寻找更具抽样效率的强化学习算法(RL)的过程中,一个有希望的方向是尽可能多地利用外部政策外数据。例如,专家演示。过去曾提出多种想法,以便很好地利用重新播放缓冲器中添加的演示,例如仅对演示进行预备培训,或最大限度地减少额外的成本功能。我们提出了一个新方法,能够利用在任何稀疏的回报环境中收集的演示和事件与任何非政策性算法进行杠杆作用。我们的方法是基于对示范和成功事件给予奖励(通过重新标签),鼓励专家模仿和自我模仿。我们的实验重点是在两种不同的模拟环境中执行若干机器人操纵任务。我们显示,我们基于奖励重新标签的方法提高了这些任务的基础算法(SAC和DDPG)的性能。最后,我们最好的算法STIR$2美元(通过Reward Retabting而自我和教师吸引)比所有基线都更具有数据效率。</s>

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
12+阅读 · 2023年1月19日
Arxiv
15+阅读 · 2022年6月14日
Arxiv
66+阅读 · 2022年4月13日
Arxiv
11+阅读 · 2021年12月8日
Arxiv
14+阅读 · 2021年3月10日
Multi-Domain Multi-Task Rehearsal for Lifelong Learning
Arxiv
12+阅读 · 2020年12月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关论文
Arxiv
12+阅读 · 2023年1月19日
Arxiv
15+阅读 · 2022年6月14日
Arxiv
66+阅读 · 2022年4月13日
Arxiv
11+阅读 · 2021年12月8日
Arxiv
14+阅读 · 2021年3月10日
Multi-Domain Multi-Task Rehearsal for Lifelong Learning
Arxiv
12+阅读 · 2020年12月14日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员