We present a nearly-linear time algorithm for finding a minimum-cost flow in planar graphs with polynomially bounded integer costs and capacities. The previous fastest algorithm for this problem is based on interior point methods (IPMs) and works for general sparse graphs in $O(n^{1.5}\text{poly}(\log n))$ time [Daitch-Spielman, STOC'08]. Intuitively, $\Omega(n^{1.5})$ is a natural runtime barrier for IPM-based methods, since they require $\sqrt{n}$ iterations, each routing a possibly-dense electrical flow. To break this barrier, we develop a new implicit representation for flows based on generalized nested-dissection [Lipton-Rose-Tarjan, JSTOR'79] and approximate Schur complements [Kyng-Sachdeva, FOCS'16]. This implicit representation permits us to design a data structure to route an electrical flow with sparse demands in roughly $\sqrt{n}$ update time, resulting in a total running time of $O(n\cdot\text{poly}(\log n))$. Our results immediately extend to all families of separable graphs.
翻译:我们提出了一个近线性时间算法,用于寻找具有多元约束整数成本和能力的平面图中的最低成本流。 之前最快的算法基于内部点方法( IPMs), 并用于用$O( (n ⁇ 1.5 ⁇ text{poly})(\log nn) 美元时间[ Daitch- Spielman, STOC' 08] 的普通稀释图。 直观地说, $\\ Omega (n ⁇ 1.5}) 美元是IPM 方法的自然运行时间障碍, 因为这些方法需要$\ qrt{n} 迭代数, 每一个都可能频繁的电流。 为了打破这个屏障, 我们开发了一个新的隐含的流图, 以通用的嵌巢式分解 [Lipton- Rose- Tarjan, Jitor'79] 为基础, 和约Schur 补充 [Kyng- Sachdeva, FOCS'16] 。 这种隐含的表达方式允许我们设计一个数据结构结构, 用于选择电流流流流, 以大约以$\ sqrto trevlempled\ truealnalnalnal\ sald\ pexplexnal_ proglexnal_ pal_ res_ proglepal_ pal_ pal_ pal_ res_ res_ res_ tral_ res) 的结果。