We present a nearly-linear time algorithm for finding a minimum-cost flow in planar graphs with polynomially bounded integer costs and capacities. The previous fastest algorithm for this problem is based on interior point methods (IPMs) and works for general sparse graphs in $O(n^{1.5}\text{poly}(\log n))$ time [Daitch-Spielman, STOC'08]. Intuitively, $\Omega(n^{1.5})$ is a natural runtime barrier for IPM-based methods, since they require $\sqrt{n}$ iterations, each routing a possibly-dense electrical flow. To break this barrier, we develop a new implicit representation for flows based on generalized nested-dissection [Lipton-Rose-Tarjan, JSTOR'79] and approximate Schur complements [Kyng-Sachdeva, FOCS'16]. This implicit representation permits us to design a data structure to route an electrical flow with sparse demands in roughly $\sqrt{n}$ update time, resulting in a total running time of $O(n\cdot\text{poly}(\log n))$. Our results immediately extend to all families of separable graphs.


翻译:我们提出了一个近线性时间算法,用于寻找具有多元约束整数成本和能力的平面图中的最低成本流。 之前最快的算法基于内部点方法( IPMs), 并用于用$O( (n ⁇ 1.5 ⁇ text{poly})(\log nn) 美元时间[ Daitch- Spielman, STOC' 08] 的普通稀释图。 直观地说, $\\ Omega (n ⁇ 1.5}) 美元是IPM 方法的自然运行时间障碍, 因为这些方法需要$\ qrt{n} 迭代数, 每一个都可能频繁的电流。 为了打破这个屏障, 我们开发了一个新的隐含的流图, 以通用的嵌巢式分解 [Lipton- Rose- Tarjan, Jitor'79] 为基础, 和约Schur 补充 [Kyng- Sachdeva, FOCS'16] 。 这种隐含的表达方式允许我们设计一个数据结构结构, 用于选择电流流流流, 以大约以$\ sqrto trevlempled\ truealnalnalnal\ sald\ pexplexnal_ proglexnal_ pal_ res_ proglepal_ pal_ pal_ pal_ res_ res_ res_ tral_ res) 的结果。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员