Many applications in computational sciences and statistical inference require the computation of expectations with respect to complex high-dimensional distributions with unknown normalization constants, as well as the estimation of these constants. Here we develop a method to perform these calculations based on generating samples from a simple base distribution, transporting them along the flow generated by a velocity field, and performing averages along these flowlines. This non-equilibrium importance sampling (NEIS) strategy is straightforward to implement, and can be used for calculations with arbitrary target distributions. On the theory side we discuss how to tailor the velocity field to the target and establish general conditions under which the proposed estimator is a perfect estimator, with zero-variance. We also draw connections between NEIS and approaches based on mapping a base distribution onto a target via a transport map. On the computational side we show how to use deep learning to represent the velocity field by a neural network and train it towards the zero variance optimum. These results are illustrated numerically on high dimensional examples, where we show that training the velocity field can decrease the variance of the NEIS estimator by up to 6 order of magnitude compared to a vanilla estimator. We also show that NEIS performs better on these examples than Neal's annealed importance sampling (AIS).
翻译:计算科学和统计推断中的许多应用要求计算对复杂高维分布的预期值,这些高度分布具有未知的正常化常数,以及这些常数的估计值。 我们在这里开发了一种方法来进行这些计算, 其依据是:从简单的基分布中生成样本, 沿速度场产生的流流运输这些样本, 并沿着这些流线执行平均值。 这种非平衡重要性抽样( NEIS) 战略可以直接实施, 可用于任意的目标分布计算。 在理论方面, 我们讨论如何使速度场与目标相适应, 并建立一般条件, 使提议的估算器成为完美的估计器, 零变化性。 我们还在NEIS 和各种方法之间建立联系, 其基础分布方法的基础是通过运输图绘制一个目标的分布图。 在计算方面, 我们展示了如何利用深度学习来通过神经网络代表速度场, 并训练它达到零差异最佳值。 这些结果在高维度实例中用数字说明, 我们展示了对速度场的训练可以降低速度场差异, 零变化度是零变化的。 我们还将NEIS 的测算图显示一个比 NIS 的大小。