We study the fundamental problem of learning a single neuron, i.e., a function of the form $\mathbf{x}\mapsto\sigma(\mathbf{w}\cdot\mathbf{x})$ for monotone activations $\sigma:\mathbb{R}\mapsto\mathbb{R}$, with respect to the $L_2^2$-loss in the presence of adversarial label noise. Specifically, we are given labeled examples from a distribution $D$ on $(\mathbf{x}, y)\in\mathbb{R}^d \times \mathbb{R}$ such that there exists $\mathbf{w}^\ast\in\mathbb{R}^d$ achieving $F(\mathbf{w}^\ast)=\epsilon$, where $F(\mathbf{w})=\mathbf{E}_{(\mathbf{x},y)\sim D}[(\sigma(\mathbf{w}\cdot \mathbf{x})-y)^2]$. The goal of the learner is to output a hypothesis vector $\mathbf{w}$ such that $F(\mathbb{w})=C\, \epsilon$ with high probability, where $C>1$ is a universal constant. As our main contribution, we give efficient constant-factor approximate learners for a broad class of distributions (including log-concave distributions) and activation functions. Concretely, for the class of isotropic log-concave distributions, we obtain the following important corollaries: For the logistic activation, we obtain the first polynomial-time constant factor approximation (even under the Gaussian distribution). Our algorithm has sample complexity $\widetilde{O}(d/\epsilon)$, which is tight within polylogarithmic factors. For the ReLU activation, we give an efficient algorithm with sample complexity $\tilde{O}(d\, \polylog(1/\epsilon))$. Prior to our work, the best known constant-factor approximate learner had sample complexity $\tilde{\Omega}(d/\epsilon)$. In both of these settings, our algorithms are simple, performing gradient-descent on the (regularized) $L_2^2$-loss. The correctness of our algorithms relies on novel structural results that we establish, showing that (essentially all) stationary points of the underlying non-convex loss are approximately optimal.


翻译:我们研究学习单一神经的基质问题 。 具体来说, 我们从一个以美元( mathbf{ x% mapsto\ sgma (\mathb{w\cdot\mathb{x}) 的形式分配 $ 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 元 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 共 、 共 共 共 共 共 共 共 共 共 共 、 共 共 共 共 共 共 共 共 共 共 共 、 共 共 共 共 、 共 共 共 、 共 共 、 共 共 、 、 共 共 共 共 、 、 、 、 、 、 、 、 、 、 、 、 共 、 、 、 、 、 、 、 、 、 、 共 共 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 共 共 共 共 、 、 共 共 共 共 、 、

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
专知会员服务
59+阅读 · 2020年3月19日
专知会员服务
158+阅读 · 2020年1月16日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年8月4日
Arxiv
0+阅读 · 2022年8月3日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
38+阅读 · 2020年3月10日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
相关基金
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员