We propose an auto-encoder architecture for multi-texture synthesis. The approach relies on both a compact encoder accounting for second order neural statistics and a generator incorporating adaptive periodic content. Images are embedded in a compact and geometrically consistent latent space, where the texture representation and its spatial organisation are disentangled. Texture synthesis and interpolation tasks can be performed directly from these latent codes. Our experiments demonstrate that our model outperforms state-of-the-art feed-forward methods in terms of visual quality and various texture related metrics.
翻译:我们为多质合成建议了一个自动编码器结构。 这种方法既依赖于一个用于计算第二顺序神经统计的紧凑编码器,又依赖于一个包含适应性定期内容的生成器。 图像嵌入一个紧凑和几何一致的潜在空间,在这个空间中,纹理代表及其空间组织被分解。 质合成和内插任务可以直接从这些潜在代码中进行。 我们的实验表明,我们的模型在视觉质量和各种与质谱相关的测量方面,优于最先进的进进取前方法。