We present a large-scale facial UV-texture dataset that contains over 50,000 high-quality texture UV-maps with even illuminations, neutral expressions, and cleaned facial regions, which are desired characteristics for rendering realistic 3D face models under different lighting conditions. The dataset is derived from a large-scale face image dataset namely FFHQ, with the help of our fully automatic and robust UV-texture production pipeline. Our pipeline utilizes the recent advances in StyleGAN-based facial image editing approaches to generate multi-view normalized face images from single-image inputs. An elaborated UV-texture extraction, correction, and completion procedure is then applied to produce high-quality UV-maps from the normalized face images. Compared with existing UV-texture datasets, our dataset has more diverse and higher-quality texture maps. We further train a GAN-based texture decoder as the nonlinear texture basis for parametric fitting based 3D face reconstruction. Experiments show that our method improves the reconstruction accuracy over state-of-the-art approaches, and more importantly, produces high-quality texture maps that are ready for realistic renderings. The dataset, code, and pre-trained texture decoder are publicly available at https://github.com/csbhr/FFHQ-UV.
翻译:我们提出了一个大规模的人脸 UV-纹理数据集,包含超过50,000个高质量的纹理 UV-映射,具有均匀的照明、中性的表情和清洁的面部区域,这些特征是在不同的光照条件下渲染逼真的3D人脸模型所必需的。该数据集来源于一个大规模的人脸图像数据集FFHQ,借助我们完全自动化和稳健的UV-纹理生成管道。我们的管道利用基于StyleGAN的人脸图像编辑方法的最新进展,从单图像输入产生多视角的归一化人脸图像。然后,一个详细的UV-纹理提取、修正和完成流程被应用于从归一化人脸图像生成高质量的UV-映射。与现有的UV-纹理数据集相比,我们的数据集具有更多样化、更高质量的纹理映射。我们进一步训练了一个基于GAN的纹理解码器作为非线性纹理基础,用于基于参数的3D人脸重建。实验表明,我们的方法提高了重建精度,超过了现有的最先进方法,并且更重要的是,产生了逼真渲染所需的高质量的纹理映射。数据集、代码和预训练的纹理解码器可以在https://github.com/csbhr/FFHQ-UV公开获取。