We present a method for learning neural representations of flow maps from time-varying vector field data. The flow map is pervasive within the area of flow visualization, as it is foundational to numerous visualization techniques, e.g. integral curve computation for pathlines or streaklines, as well as computing separation/attraction structures within the flow field. Yet bottlenecks in flow map computation, namely the numerical integration of vector fields, can easily inhibit their use within interactive visualization settings. In response, in our work we seek neural representations of flow maps that are efficient to evaluate, while remaining scalable to optimize, both in computation cost and data requirements. A key aspect of our approach is that we can frame the process of representation learning not in optimizing for samples of the flow map, but rather, a self-consistency criterion on flow map derivatives that eliminates the need for flow map samples, and thus numerical integration, altogether. Central to realizing this is a novel neural network design for flow maps, coupled with an optimization scheme, wherein our representation only requires the time-varying vector field for learning, encoded as instantaneous velocity. We show the benefits of our method over prior works in terms of accuracy and efficiency across a range of 2D and 3D time-varying vector fields, while showing how our neural representation of flow maps can benefit unsteady flow visualization techniques such as streaklines, and the finite-time Lyapunov exponent.


翻译:我们提出了一种从时变矢量场数据中学习流场地图的神经表示方法。流场地图在流体可视化领域中无处不在,因为它是众多可视化技术的基础,例如用于路径线或染线的积分曲线计算,以及用于计算流场中分离/吸引结构的。然而,流场计算的瓶颈——即矢量场的数值积分——很容易阻碍其在交互式可视化设置中的使用。因此,在我们的工作中,我们寻求流场地图的神经表示方法,其评估效率高,同时具有可扩展性,既在计算成本和数据要求方面。我们方法的一个关键方面是,我们可以将表示学习的过程不是针对流场地图的样本进行优化,而是在流场地图导数上的自洽准则,这消除了对流场样本,因此对数值积分的需要。实现这一点的核心是流场地图的新颖神经网络设计,加上一种优化方案,在这种方案中,我们的表示仅需要时间变化的矢量场进行学习,编码为瞬时速度。我们展示了我们的方法在2D和3D时变矢量场范围内的准确性和效率优势,同时展示了我们的流场地图的神经表示如何使非定常流体可视化技术(如染线和有限时间李雅普诺夫指数)受益。

0
下载
关闭预览

相关内容

【ICML2022】MetAug:通过元特征增强的对比学习
专知会员服务
24+阅读 · 2022年5月20日
专知会员服务
41+阅读 · 2020年12月18日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【泡泡一分钟】学习紧密的几何特征(ICCV2017-17)
泡泡机器人SLAM
20+阅读 · 2018年5月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月12日
Arxiv
11+阅读 · 2022年9月1日
Max-Margin Contrastive Learning
Arxiv
17+阅读 · 2021年12月21日
Arxiv
12+阅读 · 2021年5月3日
Arxiv
15+阅读 · 2020年2月5日
Arxiv
14+阅读 · 2019年9月11日
Arxiv
23+阅读 · 2018年10月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【泡泡一分钟】学习紧密的几何特征(ICCV2017-17)
泡泡机器人SLAM
20+阅读 · 2018年5月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关论文
Arxiv
0+阅读 · 2023年5月12日
Arxiv
11+阅读 · 2022年9月1日
Max-Margin Contrastive Learning
Arxiv
17+阅读 · 2021年12月21日
Arxiv
12+阅读 · 2021年5月3日
Arxiv
15+阅读 · 2020年2月5日
Arxiv
14+阅读 · 2019年9月11日
Arxiv
23+阅读 · 2018年10月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员