We present a method for learning neural representations of flow maps from time-varying vector field data. The flow map is pervasive within the area of flow visualization, as it is foundational to numerous visualization techniques, e.g. integral curve computation for pathlines or streaklines, as well as computing separation/attraction structures within the flow field. Yet bottlenecks in flow map computation, namely the numerical integration of vector fields, can easily inhibit their use within interactive visualization settings. In response, in our work we seek neural representations of flow maps that are efficient to evaluate, while remaining scalable to optimize, both in computation cost and data requirements. A key aspect of our approach is that we can frame the process of representation learning not in optimizing for samples of the flow map, but rather, a self-consistency criterion on flow map derivatives that eliminates the need for flow map samples, and thus numerical integration, altogether. Central to realizing this is a novel neural network design for flow maps, coupled with an optimization scheme, wherein our representation only requires the time-varying vector field for learning, encoded as instantaneous velocity. We show the benefits of our method over prior works in terms of accuracy and efficiency across a range of 2D and 3D time-varying vector fields, while showing how our neural representation of flow maps can benefit unsteady flow visualization techniques such as streaklines, and the finite-time Lyapunov exponent.
翻译:我们提出了一种从时变矢量场数据中学习流场地图的神经表示方法。流场地图在流体可视化领域中无处不在,因为它是众多可视化技术的基础,例如用于路径线或染线的积分曲线计算,以及用于计算流场中分离/吸引结构的。然而,流场计算的瓶颈——即矢量场的数值积分——很容易阻碍其在交互式可视化设置中的使用。因此,在我们的工作中,我们寻求流场地图的神经表示方法,其评估效率高,同时具有可扩展性,既在计算成本和数据要求方面。我们方法的一个关键方面是,我们可以将表示学习的过程不是针对流场地图的样本进行优化,而是在流场地图导数上的自洽准则,这消除了对流场样本,因此对数值积分的需要。实现这一点的核心是流场地图的新颖神经网络设计,加上一种优化方案,在这种方案中,我们的表示仅需要时间变化的矢量场进行学习,编码为瞬时速度。我们展示了我们的方法在2D和3D时变矢量场范围内的准确性和效率优势,同时展示了我们的流场地图的神经表示如何使非定常流体可视化技术(如染线和有限时间李雅普诺夫指数)受益。