It was recently proposed that neural networks could be used to approximate many-dimensional probability distributions that appear e.g. in lattice field theories or statistical mechanics. Subsequently they can be used as variational approximators to asses extensive properties of statistical systems, like free energy, and also as neural samplers used in Monte Carlo simulations. The practical application of this approach is unfortunately limited by its unfavorable scaling both of the numerical cost required for training, and the memory requirements with the system size. This is due to the fact that the original proposition involved a neural network of width which scaled with the total number of degrees of freedom, e.g. $L^2$ in case of a two dimensional $L\times L$ lattice. In this work we propose a hierarchical association of physical degrees of freedom, for instance spins, to neurons which replaces it with the scaling with the linear extent $L$ of the system. We demonstrate our approach on the two-dimensional Ising model by simulating lattices of various sizes up to $128 \times 128$ spins, with time benchmarks reaching lattices of size $512 \times 512$. We observe that our proposal improves the quality of neural network training, i.e. the approximated probability distribution is closer to the target that could be previously achieved. As a consequence, the variational free energy reaches a value closer to its theoretical expectation and, if applied in a Markov Chain Monte Carlo algorithm, the resulting autocorrelation time is smaller. Finally, the replacement of a single neural network by a hierarchy of smaller networks considerably reduces the memory requirements.


翻译:最近有人提议,神经网络可用于近似于多种维度概率分布的神经网络,例如,拉蒂斯实地理论或统计力学。随后,这些网络可以用作变异近似相,用来评估统计系统的广泛特性,如免费能源,以及蒙特卡洛模拟中使用的神经取样器。不幸的是,这一方法的实际应用受到限制,因为它在培训所需的数字成本和系统规模的内存要求方面,其规模不尽人意。这是因为最初的提议涉及一个宽度神经网络,随着自由度的总数而扩大,例如,在两个维度为免费能源时,可以用作2维度的神经网络,例如,2美元为2美元。在这项工作中,我们提议将自由度的等级连成一个等级,例如旋转,用系统线度的缩放值来取代神经系统。我们在二维线度的模型上展示了我们的方法,通过模拟不同尺寸的升至128美元水平的螺旋线,可以降低28美元的内值,在轨值中可以降低一个更精确的内值,在时间范围内,我们提出一个更精确的网络的直径直达5度要求。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
123+阅读 · 2020年9月8日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
19+阅读 · 2021年2月4日
Arxiv
13+阅读 · 2019年11月14日
Position-aware Graph Neural Networks
Arxiv
15+阅读 · 2019年6月11日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员