We consider a class of learning problems in which an agent liquidates a risky asset while creating both transient price impact driven by an unknown convolution propagator and linear temporary price impact with an unknown parameter. We characterize the trader's performance as maximization of a revenue-risk functional, where the trader also exploits available information on a price predicting signal. We present a trading algorithm that alternates between exploration and exploitation phases and achieves sublinear regrets with high probability. For the exploration phase we propose a novel approach for non-parametric estimation of the price impact kernel by observing only the visible price process and derive sharp bounds on the convergence rate, which are characterised by the singularity of the propagator. These kernel estimation methods extend existing methods from the area of Tikhonov regularisation for inverse problems and are of independent interest. The bound on the regret in the exploitation phase is obtained by deriving stability results for the optimizer and value function of the associated class of infinite-dimensional stochastic control problems. As a complementary result we propose a regression-based algorithm to estimate the conditional expectation of non-Markovian signals and derive its convergence rate.


翻译:我们考虑的是一类学习问题,即代理人清算风险资产,同时造成价格瞬时价格影响,而价格影响是由未知的进化传播器和以未知参数为特点的线性临时价格影响驱动的。我们将交易商的性能定性为收入风险功能的最大化,交易商还利用价格预测信号上的现有信息。我们提出一种交易算法,在勘探和开发阶段之间交替使用,实现亚线性遗憾的可能性很高。在勘探阶段,我们提议对价格影响内核的非参数估计采取一种新办法,只观察可见的价格过程,并得出以推进器独特性为特点的趋同率的锐分界。这些内核估计方法扩大了Tikhoonov地区的现有方法,以反向问题和独立利益为特点。在开发阶段的遗憾在于为无限尺寸控制问题相关类别的最优化和价值功能取得稳定结果。作为补充结果,我们提出了一种基于回归的算法,以估计非马克信号的有条件预期并得出其趋同率。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
69+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年3月8日
Arxiv
0+阅读 · 2023年3月5日
Arxiv
0+阅读 · 2023年3月3日
Arxiv
63+阅读 · 2021年6月18日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员