Patient-reported outcome (PRO) measures are increasingly collected as a means of measuring healthcare quality and value. The capability to predict such measures enables patient-provider shared decision making and the delivery of patient-centered care. However, due to their voluntary nature, PRO measures often suffer from a high missing rate, and the missingness may depend on many patient factors. Under such a complex missing mechanism, statistical inference of the parameters in prediction models for PRO measures is challenging, especially when flexible imputation models such as machine learning or nonparametric methods are used. Specifically, the slow convergence rate of the flexible imputation model may lead to non-negligible bias, and the traditional missing propensity, capable of removing such a bias, is hard to estimate due to the complex missing mechanism. To efficiently infer the parameters of interest, we propose to use an informative surrogate that can lead to a flexible imputation model lying in a low-dimensional subspace. To remove the bias due to the flexible imputation model, we identify a class of weighting functions as alternatives to the traditional propensity score and estimate the low-dimensional one within the identified function class. Based on the estimated low-dimensional weighting function, we construct a one-step debiased estimator without using any information of the true missing propensity. We establish the asymptotic normality of the one-step debiased estimator. Simulation and an application to real-world data demonstrate the superiority of the proposed method.
翻译:病人报告结果(PRO)措施日益被收集,作为衡量保健质量和价值的手段; 预测此类措施的能力使病人提供者能够共同参与决策和提供以病人为中心的护理; 然而,由于其自愿性质,PRO措施往往缺乏高比率,而缺失程度可能取决于许多病人因素; 在这种复杂的缺失机制下,对PRO措施预测模型参数的统计推论具有挑战性,特别是当使用灵活的估算模型,如机器学习或非参数方法等灵活的估算模型时。 具体地说,灵活估算模型的缓慢趋同率可能导致不可忽略的偏差,而传统的偏差性缺失,由于这种偏差,很难估算出其是否具有较高的偏差; 为了有效地推算出许多病人因素,我们建议使用一个能导致灵活估算假设模型的低维度亚空间。 为了消除由于采用灵活的估算模型而产生的偏差,我们确定了一种加权功能,作为传统偏差评分的替代方法,并估计能够消除这种偏差的偏差,传统的偏差偏差偏差倾向,而传统的偏差偏差偏差偏差偏差的偏差偏差偏差偏差偏差,而传统的偏差偏差偏差偏差可能导致消除这种偏差偏差,传统的偏差偏差,传统的偏差偏差偏差,而传统的偏差偏差偏差偏差,传统的偏差偏差可能导致消除这种偏差,而传统的偏差,传统的偏差因偏差,由于缺偏差性偏差性偏差,传统的偏差性偏差,传统的偏差,而导致缺偏差,传统的偏差,传统的偏差性偏差性偏差往往差性偏差性偏差性偏差,传统的偏差性偏差,传统的偏差,传统的偏差往往差往往差往往差往往差,而难以消除这种偏差,传统的偏差往往差,而难以消除偏差,传统的偏差,传统的偏差往往差往往差往往差,而难以缺偏差,而导致缺偏差,而难以消除的偏差,而难以消除这种偏差往往失偏差,而难以消除偏差,而难以消除偏差性偏差往往性偏差性偏差往往性偏差性偏差往往性偏差往往偏差性偏差往往偏差,而导致缺偏差,而难以缺偏差,而难以缺偏差性</s>